Assignment 2

COMP 2100 Due: September 13, 2024

- 1. Answer the following questions about O bounds, assuming that $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$. Assume that all functions $f_1(n)$, $f_2(n)$, $g_1(n)$, and $g_2(n)$ are continuous and non-decreasing.
 - a. Prove that $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
 - b. Find an example showing that the statement $f_1(n) f_2(n)$ is $O(g_1(n) g_2(n))$ is not always true. The functions $f_1(n) f_2(n)$ and $g_1(n) g_2(n)$ should be continuous and non-decreasing.
 - c. Find an example showing that the statement $f_1(n)/f_2(n)$ is $O(g_1(n)/g_2(n))$ is not always true. The functions $f_1(n)/f_2(n)$ and $g_1(n)/g_2(n)$ should be continuous and non-decreasing.
- 2. Find a closed-form version of the following function f(n). A closed-form version doesn't have summation notation.

$$f(n) = \sum_{i=5}^{n} (4i+1)$$

3. Find a Θ bound for the following **for** loops in Java in terms of **n**. Assume that all variables are of type **int**.

```
a. for (count1 = 0, i = 1; i <= n; i *= 2) {
    for(j = 1; j <= n; j *= 3) {
        ++count1;
    }
}
b. for (count2 = 0, i = 1; i <= n; ++i) {
    for (j = 1; j <= i; j += 2) {
        ++count2;
    }
}
c. for (count3 = 0, i = 1; i <= n; i *= 2) {
    for (j = 1; j <= i; ++j) {
        ++count3;
    }
}</pre>
```

4. Compare the following pairs of functions in terms of asymptotic growth. In each case, say whether f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or f(n) is $\Theta(g(n))$. State only the single **best** relationship between f(n) and g(n). Use the facts discussed in the slides.

	f(n)	g(n)
a.	16 <i>n</i> log <i>n</i>	58 <i>n</i> log(log <i>n</i>)
b.	$n^2 \log n$	$n^{\frac{5}{2}}$
с.	4 <i>n</i> log <i>n</i>	15 <i>n</i> log(<i>n</i> ³) + <i>n</i>