/****************************************************************************** * Compilation: javac StdAudio.java * Execution: java StdAudio * Dependencies: none * * Simple library for reading, writing, and manipulating audio. * ******************************************************************************/ import javax.sound.sampled.Clip; import java.io.File; import java.io.ByteArrayInputStream; import java.io.InputStream; import java.io.IOException; import java.net.URL; import java.util.LinkedList; import javax.sound.sampled.AudioFileFormat; import javax.sound.sampled.AudioFormat; import javax.sound.sampled.AudioInputStream; import javax.sound.sampled.AudioSystem; import javax.sound.sampled.DataLine; import javax.sound.sampled.LineUnavailableException; import javax.sound.sampled.SourceDataLine; import javax.sound.sampled.UnsupportedAudioFileException; import javax.sound.sampled.LineListener; import javax.sound.sampled.LineEvent; /** *

Overview. * The {@code StdAudio} class provides a basic capability for * playing, reading, and saving audio. * It uses a simple audio model that allows you * to send one sample to the sound card at a time. * Each sample is a real number between –1.0 and +1.0. * The samples are played in real time using a sampling * rate of 44,100 Hz. * In addition to playing individual samples, standard audio supports * reading, writing, and playing audio files in a variety of standard formats. *

* Getting started. * To use this class, you must have {@code StdAudio} in your Java classpath. * Here are three possible ways to do this: *

*

* As a test, cut-and-paste the following short program into your editor: *

 *   public class TestStdAudio {
 *       public static void main(String[] args) {
 *           double freq = 440.0;
 *           for (int i = 0; i < StdAudio.SAMPLE_RATE; i++) {
 *               double sample = 0.5 * Math.sin(2 * Math.PI * freq * i / StdAudio.SAMPLE_RATE);
 *               StdAudio.play(sample);
 *           }
 *           StdAudio.drain();
 *       }
 *   }
 *  
*

* If you compile and execute the program, you should hear a pure tone * whose frequency is concert A (440 Hz). * *

* Playing audio samples. * You can use the following two methods to play individual audio samples: *

*

* Each method sends the specified sample (or samples) to the sound card. * The individual samples are real numbers between –1.0 and +1.0. If a * sample is outside this range, it will be clipped (rounded to * –1.0 or +1.0). The samples are played in real time using a sampling * rate of 44,100 Hz. * *

* Playing audio files. * You can use the following method to play an audio file: *

*

* It plays an audio file (in WAVE, AU, AIFF, or MIDI format) and does * not return until the audio file is finished playing. This can produce * particularly striking programs with minimal code. * For example, the following code fragment plays a drum loop: * *

 *   while (true) {
 *       StdAudio.play("BassDrum.wav");
 *       StdAudio.play("SnareDrum.wav");
 *   }
 *  
* * The individual audio files * (such as BassDrum.wav * and SnareDrum.wav) * must be accessible to Java, typically * by being in the same directory as the {@code .class} file. *

* * Reading and writing audio files. * You can read and write audio files using the following two methods: *

*

* The first method reads audio samples from an audio file * (in WAVE, AU, AIFF, or MIDI format) * and returns them as a double array with values between –1.0 and +1.0. * The second method saves the samples in the specified double array to an * audio file (in WAVE, AU, or AIFF format). * *

* Audio file formats. * {@code StdAudio} relies on the * Java Media Framework * for reading, writing, and playing audio files. You should be able to read or play files * in WAVE, AU, AIFF, and MIDI formats and save them to WAVE, AU, and AIFF formats. * The file extensions corresponding to WAVE, AU, AIFF, and MIDI files * are {@code .wav}, {@code .au}, {@code .aiff}, and {@code .midi}, * respectively. * Some systems support additional audio file formats, but probably not MP3 or M4A. *

* The Java Media Framework supports a variety of different audio data formats, * which includes *

*

* When saving files, {@code StdAudio} uses a sampling rate of 44,100 Hz, * 16 bits per sample, monaural audio, little endian, and linear PCM encoding. * *

* Recording audio. * You can use the following methods to record audio samples that are * played as a result of calls to {@link #play(double sample)} or * {@link #play(double[] samples)}. *

*

* The method {@link #startRecording()} begins recording audio. * The method {@link #stopRecording()} stops recording and returns the recorded * samples as an array of doubles. *

* {@code StdAudio} does not currently support recording audio that calls * either {@link #play(String filename)} or * {@link #playInBackground(String filename)}, as these may use different * data formats, such as 8-bit and stereo. *

* Playing audio files in a background thread. * You can use the following methods to play an audio file in a background thread * (e.g., as a background score in your program). *

*

* Each call to the first method plays the specified sound in a separate background * thread. Unlike with the {@link play} methods, your program will not wait * for the samples to finish playing before continuing. * It supports playing an audio file in WAVE, AU, AIFF, or MIDI format. * It is possible to play * multiple audio files simultaneously (in separate background threads). * The second method stops the playing of all audio in background threads. *

* Draining standard audio. * On some systems, your Java program may terminate before all of the samples have been * sent to the sound card. To prevent this, it is recommend that you call the * following method to indicate that you are done using standard audio: *

*

* The method drains any samples queued to the sound card that have not yet been * sent to the sound card. *

* Reference. * For additional documentation, * see Section 1.5 of * Computer Science: An Interdisciplinary Approach * by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public final class StdAudio { /** * The sample rate: 44,100 Hz for CD quality audio. */ public static final int SAMPLE_RATE = 44100; private static final int BYTES_PER_SAMPLE = 2; // 16-bit audio private static final int BITS_PER_SAMPLE = 16; // 16-bit audio private static final int MAX_16_BIT = 32768; private static final int SAMPLE_BUFFER_SIZE = 4096; private static final int MONO = 1; private static final int STEREO = 2; private static final boolean LITTLE_ENDIAN = false; private static final boolean BIG_ENDIAN = true; private static final boolean SIGNED = true; private static final boolean UNSIGNED = false; private static SourceDataLine line; // to play the sound private static byte[] buffer; // our internal buffer private static int bufferSize = 0; // number of samples currently in internal buffer // queue of background runnables private static LinkedList backgroundRunnables = new LinkedList<>(); // for recording audio private static QueueOfDoubles recordedSamples = null; private static boolean isRecording = false; private StdAudio() { // can not instantiate } // static initializer static { init(); } // open up an audio stream private static void init() { try { // 44,100 Hz, 16-bit audio, mono, signed PCM, little endian AudioFormat format = new AudioFormat((float) SAMPLE_RATE, BITS_PER_SAMPLE, MONO, SIGNED, LITTLE_ENDIAN); DataLine.Info info = new DataLine.Info(SourceDataLine.class, format); line = (SourceDataLine) AudioSystem.getLine(info); line.open(format, SAMPLE_BUFFER_SIZE * BYTES_PER_SAMPLE); // the internal buffer is a fraction of the actual buffer size, this choice is arbitrary // it gets divided because we can't expect the buffered data to line up exactly with when // the sound card decides to push out its samples. buffer = new byte[SAMPLE_BUFFER_SIZE * BYTES_PER_SAMPLE/3]; } catch (LineUnavailableException e) { System.out.println(e.getMessage()); } // no sound gets made before this call line.start(); } // get an AudioInputStream object from a file private static AudioInputStream getAudioInputStreamFromFile(String filename) { if (filename == null) { throw new IllegalArgumentException("filename is null"); } try { // first try to read file from local file system File file = new File(filename); if (file.exists()) { return AudioSystem.getAudioInputStream(file); } // resource relative to .class file InputStream is1 = StdAudio.class.getResourceAsStream(filename); if (is1 != null) { return AudioSystem.getAudioInputStream(is1); } // resource relative to classloader root InputStream is2 = StdAudio.class.getClassLoader().getResourceAsStream(filename); if (is2 != null) { return AudioSystem.getAudioInputStream(is2); } // from URL (including jar file) URL url = new URL(filename); if (url != null) { return AudioSystem.getAudioInputStream(url); } // give up else { throw new IllegalArgumentException("could not read '" + filename + "'"); } } catch (IOException e) { throw new IllegalArgumentException("could not read '" + filename + "'", e); } catch (UnsupportedAudioFileException e) { throw new IllegalArgumentException("file of unsupported audio file format: '" + filename + "'", e); } } /** * Sends any queued samples to the sound card. */ public static void drain() { if (bufferSize > 0) { line.write(buffer, 0, bufferSize); bufferSize = 0; } line.drain(); } /** * Closes standard audio. */ /* public static void close() { drain(); line.stop(); } */ /** * Writes one sample (between –1.0 and +1.0) to standard audio. * If the sample is outside the range, it will be clipped * (rounded to –1.0 or +1.0). * * @param sample the sample to play * @throws IllegalArgumentException if the sample is {@code Double.NaN} */ public static void play(double sample) { if (Double.isNaN(sample)) throw new IllegalArgumentException("sample is NaN"); // clip if outside [-1, +1] if (sample < -1.0) sample = -1.0; if (sample > +1.0) sample = +1.0; // save sample if recording if (isRecording) { recordedSamples.enqueue(sample); } // convert to bytes short s = (short) (MAX_16_BIT * sample); if (sample == 1.0) s = Short.MAX_VALUE; // special case since 32768 not a short buffer[bufferSize++] = (byte) s; buffer[bufferSize++] = (byte) (s >> 8); // little endian // send to sound card if buffer is full if (bufferSize >= buffer.length) { line.write(buffer, 0, buffer.length); bufferSize = 0; } } /** * Writes the array of samples (between –1.0 and +1.0) to standard audio. * If a sample is outside the range, it will be clipped. * * @param samples the array of samples to play * @throws IllegalArgumentException if any sample is {@code Double.NaN} * @throws IllegalArgumentException if {@code samples} is {@code null} */ public static void play(double[] samples) { if (samples == null) throw new IllegalArgumentException("argument to play() is null"); for (int i = 0; i < samples.length; i++) { play(samples[i]); } } /** * Plays an audio file (in WAVE, AU, AIFF, or MIDI format) and waits for it to finish. * * @param filename the name of the audio file * @throws IllegalArgumentException if unable to play {@code filename} * @throws IllegalArgumentException if {@code filename} is {@code null} */ public static void play(String filename) { AudioInputStream ais = getAudioInputStreamFromFile(filename); SourceDataLine line = null; int BUFFER_SIZE = 4096; // 4K buffer try { AudioFormat audioFormat = ais.getFormat(); DataLine.Info info = new DataLine.Info(SourceDataLine.class, audioFormat); line = (SourceDataLine) AudioSystem.getLine(info); line.open(audioFormat); line.start(); byte[] samples = new byte[BUFFER_SIZE]; int count = 0; while ((count = ais.read(samples, 0, BUFFER_SIZE)) != -1) { line.write(samples, 0, count); } } catch (IOException e) { e.printStackTrace(); } catch (LineUnavailableException e) { e.printStackTrace(); } finally { if (line != null) { line.drain(); line.close(); } } } /** * Reads audio samples from a file (in WAVE, AU, AIFF, or MIDI format) * and returns them as a double array with values between –1.0 and +1.0. * The sound format must use 16-bit audio data with a sampling rate of 44,100. * The sound format can be either monoaural or stereo, and the bytes can * be stored in either little endian or big endian order. * * @param filename the name of the audio file * @return the array of samples */ public static double[] read(String filename) { // 4K buffer (must be a multiple of 2 for mono or 4 for stereo) int READ_BUFFER_SIZE = 4096; // create AudioInputStream from file AudioInputStream fromAudioInputStream = getAudioInputStreamFromFile(filename); AudioFormat fromAudioFormat = fromAudioInputStream.getFormat(); // normalize AudioInputStream to 44,100 Hz, 16-bit audio, mono, signed PCM, little endian // https://docs.oracle.com/javase/tutorial/sound/converters.html AudioFormat toAudioFormat = new AudioFormat((float) SAMPLE_RATE, BITS_PER_SAMPLE, MONO, SIGNED, LITTLE_ENDIAN); if (!AudioSystem.isConversionSupported(toAudioFormat, fromAudioFormat)) { throw new IllegalArgumentException("system cannot convert from " + fromAudioFormat + " to " + toAudioFormat); } AudioInputStream toAudioInputStream = AudioSystem.getAudioInputStream(toAudioFormat, fromAudioInputStream); // extract the audio data and convert to a double[] with each sample between -1 and +1 try { QueueOfDoubles queue = new QueueOfDoubles(); int count = 0; byte[] bytes = new byte[READ_BUFFER_SIZE]; while ((count = toAudioInputStream.read(bytes, 0, READ_BUFFER_SIZE)) != -1) { // little endian, monoaural for (int i = 0; i < count/2; i++) { double sample = ((short) (((bytes[2*i+1] & 0xFF) << 8) | (bytes[2*i] & 0xFF))) / ((double) MAX_16_BIT); queue.enqueue(sample); } // little endian, stereo (perhaps, for a future version that supports stereo) /* for (int i = 0; i < count/4; i++) { double left = ((short) (((bytes[4*i + 1] & 0xFF) << 8) | (bytes[4*i + 0] & 0xFF))) / ((double) MAX_16_BIT); double right = ((short) (((bytes[4*i + 3] & 0xFF) << 8) | (bytes[4*i + 2] & 0xFF))) / ((double) MAX_16_BIT); double sample = (left + right) / 2.0; queue.enqueue(sample); } */ } toAudioInputStream.close(); fromAudioInputStream.close(); return queue.toArray(); } catch (IOException ioe) { throw new IllegalArgumentException("could not read '" + filename + "'", ioe); } } /** * Saves the double array as an audio file (using WAV, AU, or AIFF format). * The file extension type must be either {@code .wav}, {@code .au}, * or {@code .aiff}. * The format uses a sampling rate of 44,100 Hz, 16-bit audio, * mono, signed PCM, ands little Endian. * * @param filename the name of the audio file * @param samples the array of samples * @throws IllegalArgumentException if unable to save {@code filename} * @throws IllegalArgumentException if {@code samples} is {@code null} * @throws IllegalArgumentException if {@code filename} is {@code null} * @throws IllegalArgumentException if {@code filename} extension is not * {@code .wav}, {@code .au}, or {@code .aiff}. */ public static void save(String filename, double[] samples) { if (filename == null) { throw new IllegalArgumentException("filename is null"); } if (samples == null) { throw new IllegalArgumentException("samples[] is null"); } // assumes 16-bit samples with sample rate = 44,100 Hz // use 16-bit audio, mono, signed PCM, little Endian AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, MONO, SIGNED, LITTLE_ENDIAN); byte[] data = new byte[2 * samples.length]; for (int i = 0; i < samples.length; i++) { int temp = (short) (samples[i] * MAX_16_BIT); if (samples[i] == 1.0) temp = Short.MAX_VALUE; // special case since 32768 not a short data[2*i + 0] = (byte) temp; data[2*i + 1] = (byte) (temp >> 8); // little endian } // now save the file try (ByteArrayInputStream bais = new ByteArrayInputStream(data); AudioInputStream ais = new AudioInputStream(bais, format, samples.length)) { if (filename.endsWith(".wav") || filename.endsWith(".WAV")) { if (!AudioSystem.isFileTypeSupported(AudioFileFormat.Type.WAVE, ais)) { throw new IllegalArgumentException("saving to WAVE file format is not supported on this system"); } AudioSystem.write(ais, AudioFileFormat.Type.WAVE, new File(filename)); } else if (filename.endsWith(".au") || filename.endsWith(".AU")) { if (!AudioSystem.isFileTypeSupported(AudioFileFormat.Type.AU, ais)) { throw new IllegalArgumentException("saving to AU file format is not supported on this system"); } AudioSystem.write(ais, AudioFileFormat.Type.AU, new File(filename)); } else if (filename.endsWith(".aif") || filename.endsWith(".aiff") || filename.endsWith(".AIF") || filename.endsWith(".AIFF")) { if (!AudioSystem.isFileTypeSupported(AudioFileFormat.Type.AIFF, ais)) { throw new IllegalArgumentException("saving to AIFF file format is not supported on this system"); } AudioSystem.write(ais, AudioFileFormat.Type.AIFF, new File(filename)); } else { throw new IllegalArgumentException("file extension for saving must be .wav, .au, or .aif"); } } catch (IOException ioe) { throw new IllegalArgumentException("unable to save file '" + filename + "'", ioe); } } /** * Stops the playing of all audio files in background threads. */ public static synchronized void stopInBackground() { for (BackgroundRunnable runnable : backgroundRunnables) { runnable.stop(); } backgroundRunnables = new LinkedList<>(); } /** * Plays an audio file (in WAVE, AU, AIFF, or MIDI format) in its own * background thread. Multiple audio files can be played simultaneously. * * @param filename the name of the audio file * @throws IllegalArgumentException if unable to play {@code filename} * @throws IllegalArgumentException if {@code filename} is {@code null} */ public static synchronized void playInBackground(final String filename) { BackgroundRunnable runnable = new BackgroundRunnable(filename); new Thread(runnable).start(); backgroundRunnables.add(runnable); } private static class BackgroundRunnable implements Runnable { private volatile boolean exit = false; private final String filename; public BackgroundRunnable(String filename) { this.filename = filename; } // https://www3.ntu.edu.sg/home/ehchua/programming/java/J8c_PlayingSound.html // play a wav or aif file // javax.sound.sampled.Clip fails for long clips (on some systems) public void run() { AudioInputStream ais = getAudioInputStreamFromFile(filename); SourceDataLine line = null; int BUFFER_SIZE = 4096; // 4K buffer try { AudioFormat audioFormat = ais.getFormat(); DataLine.Info info = new DataLine.Info(SourceDataLine.class, audioFormat); line = (SourceDataLine) AudioSystem.getLine(info); line.open(audioFormat); line.start(); byte[] samples = new byte[BUFFER_SIZE]; int count = 0; while (!exit && (count = ais.read(samples, 0, BUFFER_SIZE)) != -1) { line.write(samples, 0, count); } } catch (IOException e) { e.printStackTrace(); } catch (LineUnavailableException e) { e.printStackTrace(); } finally { if (line != null) { line.drain(); line.close(); } } } public void stop() { exit = true; } } /** * Loops an audio file (in WAVE, AU, AIFF, or MIDI format) in its * own background thread. * * @param filename the name of the audio file * @throws IllegalArgumentException if {@code filename} is {@code null} * @deprecated to be removed in a future update, as it doesn't interact * well with {@link #playInBackground(String filename)} or * {@link #stopInBackground()}. */ @Deprecated public static synchronized void loopInBackground(String filename) { if (filename == null) throw new IllegalArgumentException(); final AudioInputStream ais = getAudioInputStreamFromFile(filename); try { Clip clip = AudioSystem.getClip(); // Clip clip = (Clip) AudioSystem.getLine(new Line.Info(Clip.class)); clip.open(ais); clip.loop(Clip.LOOP_CONTINUOUSLY); } catch (LineUnavailableException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } // keep JVM open new Thread(new Runnable() { public void run() { while (true) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }).start(); } /** * Turns on audio recording. */ public static void startRecording() { if (!isRecording) { recordedSamples = new QueueOfDoubles(); isRecording = true; } else { throw new IllegalStateException("startRecording() must not be called twice in a row"); } } /** * Turns off audio recording and returns the recorded samples. * @return the array of recorded samples */ public static double[] stopRecording() { if (isRecording) { double[] results = recordedSamples.toArray(); isRecording = false; recordedSamples = null; return results; } else { throw new IllegalStateException("stopRecording() must be called after calling startRecording()"); } } /*************************************************************************** * Helper class for reading and recording audio. ***************************************************************************/ private static class QueueOfDoubles { private final static int INIT_CAPACITY = 16; private double[] a; // array of doubles private int n; // number of items in queue // create an empty queue public QueueOfDoubles() { a = new double[INIT_CAPACITY]; n = 0; } // resize the underlying array holding the items private void resize(int capacity) { assert capacity >= n; double[] temp = new double[capacity]; for (int i = 0; i < n; i++) temp[i] = a[i]; a = temp; } // enqueue item onto the queue public void enqueue(double item) { if (n == a.length) resize(2*a.length); // double length of array if necessary a[n++] = item; // add item } // number of items in queue public int size() { return n; } // return the items as an array of length n public double[] toArray() { double[] result = new double[n]; for (int i = 0; i < n; i++) result[i] = a[i]; return result; } } /** * Test client - plays some sound files and concert A. * * @param args the command-line arguments (none should be specified) */ public static void main(String[] args) { // 440 Hz for 1 sec double freq = 440.0; for (int i = 0; i <= StdAudio.SAMPLE_RATE; i++) { StdAudio.play(0.5 * Math.sin(2*Math.PI * freq * i / StdAudio.SAMPLE_RATE)); } String base = "https://introcs.cs.princeton.edu/java/stdlib/"; // play some sound files StdAudio.play(base + "test.wav"); // helicopter StdAudio.play(base + "test-22050.wav"); // twenty-four StdAudio.play(base + "test.midi"); // a Mozart measure // a sound loop for (int i = 0; i < 10; i++) { StdAudio.play(base + "BaseDrum.wav"); StdAudio.play(base + "SnareDrum.wav"); } // need to call this in non-interactive stuff so the program doesn't terminate // until all the sound leaves the speaker. StdAudio.drain(); } }