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Overview

Often rates for reliability are given per unit of time, but this may not always be the best or only exposure variable.  Are there other exposure variables that may add insight into the forces driving the occurrences such as failure?  This article briefly explores this issue as well as providing an Excel VBA function that computes an exact confidence interval (CI) of such rates.  
This article first presents failure or occurrence rates for several exposure variables.  

Examples are provided for oil spill rates in the Gulf of Mexico, for quantification of stress corrosion cracking rates in pipelines, and for battery failure rates.

In Harper and Eschenbach (2007), exact CIs were developed for the ratio of two Poisson means (or rates).  This article examines the development of an Excel VBA function for computing the CI for a single Poisson rate.  This article includes how to trap a known error in the Excel inverse chi-square function, and substitute an accurate inverse chi-square approximation.  When the built-in Excel function has an error, this is caught by the VBA code so that the user never sees the error.  Some Excel VBA update information is provided for the new Office 2007 which is a considerable change from the prior Microsoft Office interfaces.
Failure/Occurrence Rates and Exposure Variables
Reliability rates are commonly given as the ratio of the number of incidents per time.  These incidents may be failures or just counts of some item of interest.  The occurrence rate relative to time is often an important one and is generally of interest.  But time might mask the underlying cause.  For example, for tires, mileage is a better predictor of failure than time and hence a better exposure variable.  Even when time is important, the way in which time is recorded and used in the resulting rate may determine the validity of the estimated reliability.  Elapsed time may be convenient but operational time (number of operating hours) may be more relevant.
In some cases it is possible to use the age of a part or product to clearly distinguish it from measures of calendar time.  This could be used for example for the battery failure rate summarized in Table 5.  However in the oil spill case described here, this is not possible because the infrastructure at risk is continually changing as pipelines and platforms are built, placed in service, idled, and retired.

Wikipedia at http://en.wikipedia.org/wiki/Exposure_variable defines an exposure variable as follows:
The exposure variable, in reliability theory, is the discrete or continuous variable which differentiates distinct failure events.  It is usually time, especially the time to failure of a device, or the time to death of a person.  Time can be considered loosely as a hazard to which the device or person is exposed.
An exposure variable quantifies the amount of contact (or hazard) that the object of interest has faced.  If there is a causal link between the occurrence event and an exposure variable, then as the accumulation of the exposure variable increases the likelihood of failure rises.  This is often in terms of time.  An example is car batteries that last around 5 years.  Time and another exposure variable taken together may prove to be an even better predictor of failure.  For example operating time, temperature, and the number of pressure cycles for oil and gas pipelines impact their reliability.  This leads to multivariate reliability which is an area that needs to be better understood so that it will find use in more applications.  As another approach, this article describes exposure variables that measure the amount of infrastructure exposed per unit of time.
For the applications described in Tables 1 and 2 the amount of physical infrastructure at risk for failure is changing over time.  Thus, time alone is not the best and may not even be a good exposure variable, and variables linked to the volume of infrastructure are needed.  Tables 1 and 2, respectively, provide examples of failure rates for oil spills and stress corrosion cracking.  In a later section Tables 3 and 4 supplement these results with exact confidence intervals.  
In Table 1, 36 pipeline oil spills exceeding 50 barrels occurred in the Gulf of Mexico from 1972 to 2005.  For platform spills, there were 22 spills exceeding 50 barrels in the Gulf of Mexico from 1990 to 2005.  Note the 1972 to 2005 time interval was sub-divided for platforms because the platform spill rate was non-stationary for the full time period.  The spill rate was lower for the 1990 to 2005 years with a point estimate of 0.5041 for the ratio of its rate to the 1972 to 1989 period.  Harper and Eschenbach (2007) further show the 95% CI for the ratio of the two Poisson rates was (0.3051, 0.8330).  Since 1.0 is not in this interval the two rates are significantly different and hence the entire 1972 to 2005 time frame is non-stationary for platform spills.
KMile-years tracks the exposure of thousands of miles of undersea pipeline in use per unit of time.  (Thus 1000 miles for a year or 4000 miles for three months would both have an exposure of 1.0 KMile-years.)  Calculating the total exposure is fairly straightforward.  However, there is a significant bookkeeping challenge in calculating the value of the exposure variable between events, when the data on the exposure variable is provided on an annual basis.  For example, if the beginning of year value is 3578 platforms, and the end-of year value is 3530 platforms; what is the number of platform-years between May 3rd and July 8th?  This challenge must be met for the crucial goodness of fit test for the inter-event exponential distribution.  

The rates in Table 1 are the ratio of the oil spills divided by the exposure variable.  For example the Pipeline Spills/KMile-year rate is 36/161.796 = 0.223.  In a similar calculation the Platform Spills/platform year rate is 22/56.37 = 0.3903.  The associated exact Poisson confidence intervals are found later in Table 3.
	Label
	Exposure Variable
	Sum Exposure Variable
	# Spills
	Rate

	Pipeline Spills/KMile-year, 1972-2005
	KMile-years
	161.796
	36
	0.223

	Platform Spills/platform-year, 1990-2005 only
	KPlatform-years
	56.37
	22
	0.3903


Table 1. Gulf of Mexico Oil Spill Rates for ≥ 50 bbl Spills
The second example in Table 2 involves stress corrosion cracking (SCC) which is a serious threat to oil and gas pipelines and may lead to sudden ruptures.  This data is from an international pipeline company.  Field measurements were made in the thousands of expensive excavations of buried pipe.  The number of SCC colonies and the length of pipe dug were recorded along with numerous other variables.  A colony is a set of interlinked stress cracks on the exterior surface of the pipeline that under certain conditions can quickly grow and lead to pipeline rupture. 
For the data in Table 2 the coating condition of the pipe was evaluated prior to its removal.  Then the pipe was checked for SCC colonies.  As can be seen there appears to be a strong relationship between the likelihood of SCC colonies and the pipe coating condition.  Pipe coating condition can often be estimated from what are called direct assessment methods such as above ground pipe to soil potential measurements that do not entail the costly digging of the pipeline.  Thus possible problem areas can be more cost effectively identified and more quickly addressed; however, this can lead to false positives where the pipe coating is poor but there are no SCC colonies and missed SCC colonies where the coating is excellent.  In practice, there is a set of guidelines used that fold in many factors to improve the likelihood of finding SCC prior to excavation.
	Pipe Coating Condition
	# SCC Colonies
	Meters of Inspected Pipe
	SCC rate/m

	Excellent
	19
	1756
	0.0108

	Well
	181
	1978
	0.0915

	Fair
	1181
	3915
	0.3016

	Poor
	1078
	1815
	0.5939


Table 2. Pipeline Stress Corrosion Cracking Rates for Different
 Pipeline Coating Conditions

As much as possible, there should be a sound logic that links failure events to the exposure variable.  This is important when the environment and infrastructure at risk are changing, as in the initial application of Tables 1 and 2.  It is even more important when the event occurrence is being extrapolated to a different environment, such as spill rates from the Gulf of Mexico to the Arctic.  The presence of this logic is reflected in a subtle, but important, change in language.  The presence of a linking logic between exposure and occurrence probability allows the description of that exposure as a driving variable.  In other words, the description is not of just a simple statistical correlation, rather a causal linkage is suggested.  Relationships based on causality are considered more valid than relationships based on correlation.
In the case of using Gulf of Mexico data for any purposes in the Arctic, Eschenbach and Harper (2006) postulated that current exposure variable of billions of barrels of oil (Bbbl) used by the Minerals Management Service within the U.S. Department of the Interior was not the only exposure variable of interest and further suggested that it was not the best to translate Gulf of Mexico results to future Arctic off-shore pipeline and platform spills.  Exposure variables examined included barrels of production, time (in years), Kmile-years of pipeline, and number of platform-years.  In the Gulf of Mexico in 2005 there were about 3400 platforms and about 8500 miles of pipeline in active use in the areas regulated by the Minerals Management Service in the U.S. Department of the Interior.  The level, amount, and character of infrastructure development in the Arctic will differ since platforms are at different lengths from shore, platforms will serve larger areas due to improved drilling technology, and production rates per platform will be far higher.  Exposure variables that can be adapted to very different conditions in the Arctic will be assessed by a variety of engineering and statistical measures.
Relevant exposure variables should not be assumed as a given.  Modeling of any type requires thought, patience, and a willingness to rock the corporate boat from time to time.  What has made sense in the past should be reviewed and expanded or discarded periodically.
Testing Goodness-of-Fit
When counting any type of event, occurrence, or failure a Poisson distribution is often used.  The Poisson distribution is a flexible discrete distribution that may adequately model the failure events; however, this must be tested.  A chi-square goodness of fit test is frequently used on a discrete distribution like the Poisson.  This requires binning or collecting the number of observations that fall into various cells.  A more powerful approach to assess the Poisson fit is to analyze the fit of the inter-event exposure variable to the continuous exponential distribution. 

It is also easier to assess if the continuous distribution adequately models the inter-event data.  No lumping of data into bins or cells is required.  This is a more powerful statistical test and one that removes any subjectivity over how to create the bin widths needed for the chi-square goodness of fit test (D’Agostina and Stephens, 1986; Huber and Glen, 2007; Stephens, 1974).  Such tests are necessary for each exposure variables of interest.  Examples of goodness of fit tests are found in Eschenbach and Harper (2006) and to a lesser extent in Harper and Eschenbach (2007).
Our personal experience has been that often the Poisson is found to be reasonable via a goodness of fit test (chi-square on the discrete Poisson or the Anderson-Darling or Kolomorgorov-Smirnoff tests on a continuous exponential).  However there are instances where this is not the case.  There seems to be a dearth of good discrete distributions when one compares the common discrete distributions to the plethora of continuous distributions.  A more flexible option is a compound or mixed Poisson distribution (ch 5, Clark and Harper, 2000; or section 8.2.5, Johnson, Kemp, and Kotz, 2005).  This can provide a longer tail than the standard Poisson to model rarer large values not uncommon in some disciplines such as with geologic data.

Exact Poisson Confidence Intervals

Once a Poisson distribution has been justified, one can begin to estimate the occurrence rate.  The rate is the mean of the Poisson distribution which is the ratio of the number of occurrences over the summed exposure variable.  Care must be given to determine if a time varying Poisson mean (also known as a non-stationary Poisson process or a non-homogeneous Poisson process) is needed.  If the assumption of a stationary non-changing mean is not appropriate then intervals of quasi-stationarity might be found for which a given Poisson rate is reasonable.  For the spill rate example of this article, the data on pipeline spills was stationary over the data set, while the platform spill data was partitioned into two intervals.
Building from Johnson, Kemp and Kotz (2005, pp. 176) and Buchan (2004) the formulas below explicitly address the incorporation of an exposure variable.  The first formula for 
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 represents an exact lower confidence bound for the mean Poisson rate 
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 while the second for 
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 is the formulation for the upper confidence bound.  Taken together these form the 100(1-
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)% confidence interval.  Dividing 
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 equally into each tail results in a two-tailed exact confidence interval for the Poisson rate.  These confidence intervals are based on the chi-square (χ2) distribution.  
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Generally in statistics increasing the sample size decreases the width of confidence intervals.  In these equations, the subscript x is the number of events (such as oil spills or failures), and is the basis for the number of degrees of freedom for the chi-square distribution.  To check that this formula behaves as expected, assume that the number of occurrences and the amount of exposure are both doubled (which keeps the rate constant).  Doubling the number of degrees of freedom more than doubles the lower χ2 value.  Since the exposure also doubled, the lower limit goes up and is closer to the estimated average.  In like fashion doubling the number of degrees of freedom less than doubles the upper value, so the upper limit has decreased.  
The chi-square value needed above is what is called the inverse chi-square.  By this it is meant that the user will provide the appropriate confidence level desired (which in turns gives the 
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value needed) and the number of incidents (x above).  Then the inverse routine provides the corresponding value of the chi-square distribution.
Excel VBA Solution Addressing Problems with Excel’s Inverse Chi-Square Function
The formula for the exact Poisson confidence interval has two major components.  The first is the inverse chi-square distribution that is addressed in this article.  The second is the sum of the relevant exposure variable (often total time on test) which can be more difficult in practice than one might initially anticipate.  While this is not the major focus of this article, its importance and potential challenges should not be overlooked.

The Poisson confidence limits in the prior section would not be hard to implement in Excel if Excel’s chi-square inverse routine was error free.  For large degrees of freedom, Excel’s inverse chi-square distribution (even in Excel 2007) aborts and sends an error message to the user.  Iain Buchan (2004) offered a VBA solution but it required having a very specific U.K. statistical software package StatsDirect that could be linked to and called by VBA.  In our approach detailed below no other statistical package is required.
The approach taken was to modularize the VBA code keeping each subprogram as simple as possible.  This aids the debugging as it permits isolation of any errors.  The following general steps were used in the development of the VBA functions available free at http://faculty.otterbein.edu/WHarper/.  While the last step below is purely cosmetic, it has been found to save consider time when pulling together reports.  The user can bypass this last step if desired.  Once installed this VBA code performs just like any Excel function.
1. Check user inputs for possible errors and report them.

2. Attempt to use the Excel CHIINV

3. If an error occurs in the Excel CHIINV

a. Trap the error so that the user does not see the error message

b. Use the approximation given below for the inverse chi-square

4. Compute the lower and upper confidence interval values.

5. Concatenate the results to provide a nice looking two-tailed 100(1-α)% confidence interval.

Checking function input ensures that the user does not get thrown in the midst of the Visual Basic Editor if an error occurs.  It is the responsibility of the code developer to provide meaningful error messages as seen in an example later.  The Excel CHIINV function aborts for large degrees of freedom.  Buchan (2004) for example reports failures for CHIINV(0.975, 932).  When this occurs, the user must be protected.  The VBA code uses an On Error check to capture such events and then uses the accurate chi-square approximation given below.  The user may call separate VBA functions for the lower and upper confidence limits of interest or use a function for step 5 above providing a cosmetically appealing two tailed confidence interval in a single Excel cell fashioned to meet the user’s desired number of decimal digits.
The approximation used to the inverse chi-square is found in Johnson, Kotz, and Balakrishnan (1994).  It is the Wilson-Hilferty (1931) approximation and follows:
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From this the inverse chi-square distribution is approximated as shown below.
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The following five functions and one subprogram comprise the downloadable VBA code that can be added to one’s current Excel repertoire.  There are multiple ways to do this such as storing these in the personal.xls (personal.xlsm in Excel 2007) or creating an Add-In.
Function PoissonCI_Lower(NumIncidents, SumExposureVariable, ConfLevel)
Function PoissonCI_Upper(NumIncidents, SumExposureVariable, ConfLevel)
Function PoissonCIText(NumIncidents, SumExposureVariable, ConfLevel, NumDigits)
Function ChiFix(prob, df)
Function ChiInvApprox(prob, df)

Sub CheckPoissonConfIntInput(NumIncidents, SumExposureVariable, ConfLevel)

The first two functions may be all that one directly calls from within Excel.  The user supplied inputs are the number of events or incidents, the sum of the exposure variable, and the desired confidence level.  These lower and upper Poisson confidence intervals place α/2 into the relevant tail and are thus based on the assumption that most users will want two-tailed confidence intervals.  If this is not the case, the bold user can easily modify the VBA code or more simply change the confidence level provided.  For example if one wanted an upper one-tailed 95% confidence interval, specification of 0.90 as the input confidence level accomplishes this automatically by putting (1 – 0.90)/2 = 0.05 into what the function thinks is α/2 but instead is the user desired α = 0.05 for the one-sided interval.
The function PoissonCIText puts the full two-tailed confidence interval into a single Excel cell.  This is accomplishes by concatenation of the results of both the lower and upper confidence interval values along with parentheses and addressing the user specified number of decimal digits.
The functions ChiFix and ChiInvApprox are called by the above functions.  They could have been made sub procedures rather than functions, but there are times where one may want to directly find the inverse chi-square value.  In VBA sub procedures operate as commands that may change many things such as the formatting of multiple cells or insertion of new worksheets.  Functions however are passive in the sense that they return usually a single value in response to user input without changing formatting or the other physical aspects of the workbook.  In ChiFix the following code is used:

    On Error GoTo UseApprox

    ChiFix = WorksheetFunction.ChiInv(prob, df)

    Exit Function

UseApprox:

    ChiFix = ChiInvApprox(prob, df)
End Function
The On Error condition occurs when the Excel function ChiInv aborts.  It then sends the program to the label UseApprox if an error occurs in this function.  If the built-in Excel function ChiInv (which is also an approximation to the inverse chi-square) has an error (which it does for large degrees of freedom), the ChiInvApprox function is used.  If ChiInv does not generate an error, its returned value is used and the function is left via the Exit Function statement.
A VBA subprogram CheckPoissonConfIntInput verifies user input and provides hopefully meaningful error messages to the user so that the user can figure out what to do.  Also this keeps the user from entering the possibly intimidating domain of the Visual Basic Editor.
Figures 1, 2, and 3 are screen dumps illustrating both the types of visual interface the user may encounter using these functions.  In the examples below the Insert Function approach was used instead of directly keying in the function name (which will also work fine).  Note the helpful description of the PoissonCIText function which the developer should provide (Walkenbach, 2007; Harper & Eschenbach, 2007)
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Figure 1. Insert Function use of Exact Poisson CI function.
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Figure 2. Exact Confidence Interval example for Oil Spill data
Figure 2 shows the concatenated text output that will appear in the desired Excel cell of (0.156, 0.308) with the user specified number of decimal points.  This is a handy way to quickly get nicely formatted output from Excel that can easily be dropped directly into a report.  These results are the same as seen in Table 3 for pipeline spills. The error message in Figure 3 arises if the user provides an invalid confidence level which is the third input to this function.  Similar error messages capture other probable user faux pas.  Keep in mind that as a code developer, it is imperative to protect the user, by providing hints, such as that the confidence level is entered as 0.90 not as an α of 0.10.
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Figure 3. Sample Error Message.

Examples of Exact Poisson Rate Confidence Intervals
This section supplements the earlier results for failure rates for different exposure variables by adding exact Poisson confidence intervals calculated with the Excel VBA routines.  Table 3 shows the rates and intervals for oil spills, and Table 4 shows the rates and intervals for stress corrosion cracking.  Table 5 shows confidence intervals for the hypothetical battery data given in Harper and Eschenbach (2007).
	Label
	Exposure Variable
	Sum Exposure Variable
	# Spills
	Rate
	95% CI

	Pipeline Spills/KMile-year
	KMile-years
	161.796
	36
	0.223
	(0.156, 0.308)

	Platform Spills/platform-year
	KPlatform-years
	56.37
	22
	0.3903
	(0.2446, 0.5909)


Table 3. Gulf of Mexico Oil Exact Poisson CI for ≥ 50 bbl Spills
	Pipe Coating Condition
	# SCC Colonies
	Meters of Inspected Pipe
	SCC rate/m
	95% CI

	Excellent
	19
	1756.14
	0.0108
	(0.0065, 0.0169)

	Well
	181
	1978.59
	0.0915
	(0.0786, 0.1058)

	Fair
	1181
	3915.66
	0.3016
	(0.2847, 0.3193)

	Poor
	1078
	1815.27
	0.5939
	(0.5589, 0.6304)


Table 4. Stress Corrosion Cracking Exact Poisson CI for Different Coating Conditions
	Battery Type
	# Failures
	Sum of Time, years
	Failure Rate/year
	95% CI

	A
	45
	74.97
	0.600
	(0.438, 0.803)

	B
	50
	151
	0.331
	(0.246, 0.437)


Table 5.  Battery Failure Rates for Two Battery Types

Brief Comments about Office 2007
Office 2007 is working its way onto the computers of the world and has a different interface than what users have grown accustomed to.  It is worth the transition if you need more rows or columns than available in Excel 2003.  Excel 2007 has over 1,000,000 rows per worksheet and the number of columns has jumped from 255 (Column IV) in Excel 2003 to over 16,000 (Column XFD).  These Excel 2003 VBA routines will work with Excel 2007 but will lose the helpful text such as “Produces well formatted 2 tailed Poisson CI to match user requested number of decimal digits” seen in the Insert Function dialogue box above.  Such comments can be easily reloaded manually; however, we provide both 2003 and 2007 versions on the web.
We are not in a position  to offer detailed advice in this article on Excel 2007 VBA (see Walkenback 2007) but expect learning time delays in the migration to Office 2007.  Excel 2007 has more security based issues such the familiar .xls suffix being replaced with either .xlsx or .xlsm where .xlsm implies macro (VBA) code is included.  VBA has changed little from 2003 and once in the Visual Basic Editor, the interface is the same as before.  Have patience and share Office 2007 knowledge with others.
Conclusion

Failure, event, or occurrence counts are important to product and system integrity.  The development of rates and confidence intervals for appropriate exposure variables aids engineers and managers to predict reliability and protect our lives and the environment.  Whenever possible, the quantification of uncertainty provided by sound CIs should be  standard engineering practice.
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