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Abstract 
Eschenbach and Harper (2006) analyzed offshore oil spills in the Gulf of Mexico with 
extensions to the northern seas of Alaska.  This involved multiple methods including 
assessing what statistical distribution adequately fits the data.  Empirical distribution 
function (EDF) statistical procedures are powerful goodness of fit tests and also provide 
for good visual assessments.  The most powerful of the current EDF methods is the 
Anderson-Darling test.  This paper focuses on the Anderson-Darling EDF goodness of fit 
procedure for both the two and three parameter Weibull distribution that is often used in 
reliability analysis.  Excel VBA code has been developed to compute this test statistic 
and also the associated p-values to allow statistical significance tests.  The Excel routines 
are available free at http://faculty.otterbein.edu/WHarper/.  The functions are illustrated 
with Gulf of Mexico oil spill data. 
 
Key words: Anderson-Darling, Goodness of Fit, Weibull, Oil Spills 
 

1.  Introduction 
 

Statisticians have long proposed various statistical distributions for data; however, there 
has been less enthusiasm about testing if such assumptions are true.  Over time a 
multitude of what are called goodness of fit tests have evolved.  Goodness of fit 
procedures are used to see how well a hypothesized distribution matches the available 
data.  The null hypothesis Ho assumes that the proposed distribution adequately agrees 
with the data.  Due to the vagueness of the alternative hypotheses, goodness of fit tests 
are performed backwards from most statistical hypothesis tests.  In a typical statistical 
null hypothesis (Ho) one generally hopes to reject it to make some assertion at a given 
degree of confidence that a well defined alternative hypothesis (Ha) is valid.  For example 
Ho may be that a given medical treatment is equivalent to a placebo whereas the 
alternative Ha states that the treatment is better than a placebo.  In goodness of fit 
situations where a well defined Ha is not available, the setup is such Ho states that a 
specific distribution fits the data.  However the alternative Ha vaguely states that the 
specific distribution does not agree with the data.  It does not specify a specific other 
distribution.  One hopes not to reject the null hypothesis Ho and thus accept the specified 
distribution as adequate.  This may create confusion among practitioners who may be 
already struggling with statistical thinking in general. 
 
The grandfather of goodness of fit tests is the venerable chi-square test.  It is the method 
students are most likely to see in an introductory statistics course.  Karl Pearson (1900) 
developed the chi-square statistic with the idea of reducing the general problem of testing 
goodness of fit to a multinomial setting by comparing observed cell counts to the 
expected frequencies dependent on the assumed distribution being evaluated.  It has a 
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long history and has been well studied.  It is flexible, but it is not a powerful statistical 
test.   
 
A major reason the chi-square goodness of fit procedure is less powerful than other 
procedures is that the observed data are not treated as individual data points in the 
analysis but instead values are placed in bins (also called cells or groups).  Then it is only 
known that a certain number of observations fall somewhere in the bin but they have lost 
their unique value.  Additionally many issues arise on how best to select the bin 
boundaries.  Most applications use bins of equal width rather than the statistically 
suggested practice of making the bins equally probable.  Making cells equally probable 
takes time, and much more daunting it also requires different binning for each 
hypothesized distribution. 
 
Some other goodness of fit measures are graphical in nature and take advantage of the 
human mind’s ability to assess if the theoretical distribution passes the TLAR method.  
TLAR is an occasionally used engineering acronym for That Looks About Right.  
Graphical methods have been used for years and are a great communication tool for both 
statisticians and others.  More recently graphical measures have been combined with 
more formal statistical techniques to provide both visual and quantitative evaluations. 
 
Probability plots are a well grounded graphical method. The probability plot (as with any 
visual method) is best evaluated with a trained eye especially in the tails of the 
distribution.  However, poor fits as well as excellent fits are obvious even to the newly 
initiated data detective. 
 
Superimposition of a probability density function over the empirical histogram has long 
been a well established tool.  It is a useful method but one that is visually harder to assess 
than seeing if the data fits on a straight line as done in the aforementioned probability 
plot.  Perhaps its main utility is showing the shape of the distribution suggested by the 
observed data and assessing if a proposed theoretical model passes a TLAR test. 
 
More recent developments in goodness of fit are called EDF procedures.  EDF stands for 
the empirical distribution function.  It is labelled Fn(x) with its mathematical definition 
below where n is the number of observations. 

( ) ;n

number of observations x
F x x

n


     . Some label this ECDF for 

empirical cumulative distribution function.  Whereas the probability density function 
(pdf) is compared to the observed histogram in the prior paragraph (with issues of 
binning for the histogram), the EDF does not bin and uses each data value separately.  It 
compares the observed (empirical) cumulative distribution function to the theoretical 
cumulative distribution function.  Generally it is easier to assess fit with the cumulative 
probabilities used in EDF procedures than the pdf vs. histogram approach of the prior 
paragraph. 
 

2.  Minerals Management Service Gulf of Mexico Oil Spill Data 
 

Eschenbach and Harper (2006) studied both pipeline and platform oil spills in off-shore 
waters for the U.S. Department of Interior (DOI).  Most of the data came from the Gulf of 
Mexico.  One of the research objectives was to analyze the existing data and suggest way 
to migrate the findings to the northern slope of Alaska with the likely future growth of 
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off-shore drilling in areas such as Prudhoe Bay.  The funding for the work was provided 
by DOI’s Minerals Management Service (MMS) Alaska Outer Continental Shelf Region.  
Prior published work by Anderson & LaBelle (2000) examined spills of at least 1,000 
barrels of oil.  Eschenbach and Harper argued that while the consequences of smaller 
spill sizes may not have as much environmental impact as the larger spills, it was critical 
to analyze all available data so that the causes may be identified and measures to improve 
processes put into place to mitigate any future spills.  Spills sizes down to 50 barrels are 
recorded in MMS spreadsheets.  A database is not kept for oil spills less than 50 barrels.  
A barrel of oil is 42 U.S. gallons (approximately 159 litres or 35 U.K. Imperial gallons). 
 
The resulting 36 pipeline spills over 1964 – 2005 were felt to provide a more 
comprehensive evaluation than the 16 spills of 1,000 barrels or more previously used as 
the basis for off-shore pipeline spill assessments.  Nonetheless, there are unresolved 
issues still to be studied.  For example, some of the Gulf of Mexico spills were caused not 
by human error but by hurricanes not found in the icy waters north of Alaska.  
Additionally potential new threats found in Alaska must be quantified including ice keel 
gouging, strudel scour, upheaval buckling, and thaw settlement.  Thus as proposed in the 
research, only portions of the data analyzed may be used to assess the likelihood of spills 
on the northern Alaska slope. 
 
The scope of the MMS work was broad and many topics were investigated, but as with 
many projects there were additional future areas for subsequent study and follow-on.  As 
part of this project, Eschenbach & Harper fit statistical distributions to oil spill volume 
data.  Both platform and pipeline spill data sets plus additional data sets were used in this 
new analysis to develop our Anderson-Darling goodness of fit Excel VBA software that 
is available free on the web. 
 
Reliability is the likelihood than an item or a system will perform its intended function 
under specific conditions without failure for a given period of time. The Weibull 
distribution is one of the key distributions in reliability analysis.  This is for multiple 
reasons including the flexibility of the Weibull distribution shape.  It can represent what 
is often call the bathtub reliability curve that starts with decreasing failure rates during 
what is often termed infant mortality, then constant failure rate (bottom of the bathtub), 
and finally the right hand side of the bathtub with increasing failure rates due to wear out. 
Thus reliability is not a static probability, but instead is a dynamic assessment over time.  
While the Weibull plays a large role in reliability, its flexibility in shape from an 
exponential (a special case of the Weibull) to a near normal or lognormal has found the 
Weibull to be an adaptive distribution for statistical modeling of many real world 
variables. 
 
One of the challenges of reading Weibull literature search is keeping track of both the 
Weibull parameter notation and the terminology.  See Harper, James, Eschenbach, and 
Slauson (2008) for more details.  Below are both the pdf and cdf formulation for our 3-
parameter Weibull.  In terms of the subsequent Minitab 15 plot labels α is the scale, β is 
the shape, and γ is the threshold.  For a 2-parameter Weibull, γ is 0.  Weibull distributions 
often underlie reliability evaluations.  

   

 
(( )/ ) (( )/ )1(: ( ) ) ;0 . : ( ) 1x xpdf f x x e forx otherwise cdf F x e                 
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Figures 1 and 2 based on 36 pipeline spills illustrate the utility of the plotted EDF in 
assessing goodness of fit visually instead of the more common histogram versus the 
probability density function approach.  Figure 1 is a fairly standard approach of 
comparing a histogram of the pipeline spills to a potential statistical probability density 
function for a 3-parameter Weibull.  Visually it is difficult even for the trained statistical 
eye to accurate compare the thin line of the hypothesized distribution to the observed 
histogram.  While one can see that both the observed data and the theoretical model are 
highly skewed with a long tail to the high values, it is hard to say much more. 
 
Figure 2 is the EDF (or Empirical CDF) for the same 36 observed values versus the same 
theoretical 3-parameter Weibull cumulative distribution function. It is easy to see in 
Figure 2 where the smooth theoretical CDF curve deviates from the step function EDF.  
Figure 2 shows a reasonable fit between the observed data and the proposed 3-parameter 
Weibull though this will not be as obvious to those that have not used these methods 
especially for relatively small to moderate sized data sets.   
 
Examining the cumulative probabilities (the vertical or y axis in Figure 2), it can be seen 
that the observed data (the EDF) represented by the step function deviates from the 
smooth theoretically proposed Weibull in the 60-80% cumulative probability range.  
Since the step function is to the right of the smooth theoretical curve in this range, this 
shows the actual data does not attain these cumulative probabilities as soon as the 
theoretical model.  Similarly examine the horizontal or x axis for pipeline oil spills of 
15,000 or larger.  For the oil spill range depicted, the observed oil spills for 15,000 to 
45,000 have cumulative probabilities somewhat higher than predicted by the theoretical 
smooth curve.  In a related note since cumulative probabilities sum to 100%, the 
theoretical model has a higher probability of spills larger than 45,000 barrels than 
observed by the 36 spills. 
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Figure 1:  Gulf of Mexico Pipeline Oil Spill Histogram with Superimposed Theoretical 
3-Parameter Weibull Probability Density Function 

Section on Statistics and the Environment – JSM 2009

621



 

 

400003000020000100000

100

80

60

40

20

0

Pipeline Oil Spills >= 50 barrels

Pe
rc

en
t

Shape 0.4738
Scale 1497
Thresh 48.27
N 36

3-Parameter Weibull 
Empirical CDF of Pipeline Oil Spills >= 50 barrels

 
 

Figure 2:  Gulf of Mexico Pipeline Oil Spill Empirical Distribution Function with 
Superimposed Theoretical 3-Parameter Weibull Cumulative Distribution Function. 
 
EDF statistical procedures are statistically powerful and complement the visual images 
such as Figure 2 above.  The most powerful of the current EDF methods is the Anderson-
Darling test.  This paper focuses on the Anderson-Darling EDF goodness of fit procedure 
for both the two and three parameter Weibull distribution.  The estimation of the Weibull 
parameters used in our VBA software is based on the maximum likelihood estimation; 
however, the Anderson-Darling goodness of fit procedures are applicable regardless of 
the estimation methodology. 

Let X1, …, Xn random sample of size n with X(1) < X(2) < …< X(n) as the order statistics.  
The cumulative distribution function (CDF) of X is F(x).  The empirical distribution 
function (EDF) as explained earlier is  

number of observations  x
( ) ; .nF x x

n


    

  
In particular,  

(1) ( ) ( 1) ( )( ) 0, ; ( ) , , 1,..., 1; ( ) 1, .n n i i n n

i
F x x X F x X x X i n F x X x

n             

Fn(x) is a step function with height changes of 1/n based on the observed order statistics 
of the data.  The EDF Fn(x) is the proportion of observations less than or equal to x.  The 
CDF F(x) is the probability of an observation less than or equal to x based on the 
assumed theoretical distribution.  If the assumed theoretical distribution is correct, then 
Fn(x) provides a consistent estimator of F(x). 
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3.  Well known EDF Statistics 

 
An EDF statistic measures the gap between Fn(x) and F(x) and is based on the vertical 
differences between Fn(x) and F(x).  These statistics fall into either the supremum class or 
the quadratic class. The supremum statistic most well known is the Kolmogorov-Smirnov 
goodness of fit D statistic.  The two EDF statistics used to compute D are D+ and D-.  D+ 
is the largest vertical difference when Fn(x) is greater than F(x). D- is the largest vertical 
difference when Fn(x) is smaller than F(x).  Mathematically, D+ = supx{Fn(x) – F(x)} 
while D- = supx {F(x) – Fn(x)}.  The Kolmogorov-Smirnov test statistic D is defined as D 
= supx|Fn(x) – F(x)| = max(D+, D-).  Kolmogorov (1933) and Smirnov (1939) are the 
original sources for Kolmorgov-Smirnov test though it is well covered in many text 
books such as Banks, Carson, Nelson, Nicole (2004). 
 
The focus of this work is on the second class known as the quadratic EDF statistics. 
Much of what follows is based on D’Agostino and Stephens (1986).  The quadratic class 

is based on the Cramer-von Mises family 2[ ( ) ( )} ( ) ( )nQ n F x F x x dF x




  where the 

function ( )x  weights the squared difference {Fn(x) – F(x)}2.  When ( )x =1 the 

statistic is the Cramer-von Mises statistic. If ( )x =[{F(x)}{(1 – F(x)}]-1 the statistic is 
the Anderson-Darling (1954) statistic, sometimes called A2, or more commonly AD. 
 
Computing formulas are based on using the Probability Integral Transformation. When 
F(x) is the true distribution of X, the random variable Z = F(X) is uniformly distributed 
between 0 and 1.  This is an often used concept when generating pseudo-random numbers 
for many statistical distributions.  Z has a Uniform (0,1) distribution function F*(z) = z, 0 
< z < 1.  Suppose that a sample X1, …, Xn gives values Zi = F(Xi), i = 1, …, n, and let 

*
nF (z) be the EDF of the values zi. 

 

EDF statistics can now be calculated from a comparison of *
nF (z) with the uniform 

distribution for Z.  For values z and x related by z = F(x), the corresponding vertical 
differences in the EDF diagrams for X and for Z are equal; that is, 
 

   * *( ) ( ) ( ) *( ) ( )n n nF x F x F x F x F z z      

 
EDF statistics calculated from the EDF of the Zi that is compared with the  uniform 
distribution take the same values as if calculated from the EDF of the Xi, compared with 
F(x).  The Anderson-Darling computational formulas involve the Z-values arranged in 
ascending order, Z(1) < Z2 < …< Z(n), i.e., these are the Z order statistics.  Both formulas 
give identical results though the second formula is easier to program. 
 

( ) ( 1 )(1 / ) (2 1)[ln ln{1 }]i n ii
AD n n i Z Z         

( ) ( )(1/ ) [(2 1)ln (2 1 2 )ln{1 }].i ii
AD n n i Z n i Z        

Since (( )/ ) ( ),  1 i

i i
xZ F x Z e

     for the three parameter Weibull where typically 

parameter estimates for  α,β, and γ are also computed from the available data. 
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Once the AD statistic has been computed for a given set of data and a hypothesized 
Weibull distribution, a table can be used to see if the one-tailed test statistic is in the 
critical region.  If the observed test statistic is in the critical region for a specified α level, 
then the Weibull distribution is rejected and found not to adequately fit the data.  
Stephens (1977) presents a table of AD critical values for the extreme value distribution.  
Since the natural log transformation of the Weibull is the minimum extreme value 
distribution, this table may also be used for the 2-parameter Weibull goodness of fit.  
This is also covered in D’Agostino and Stephens (1986).  Lockhart and Stephens (1994) 
provide similar tabular results for the 3-parameter Weibull.  Anderson-Darling critical 
values in both publications are based on Monte Carlo simulations.  Lockhart and 
Stephens (1994) say the results are adequately accurate for samples sizes n ≥ 10.  For the 
2-parameter case, Stephens (1977) provides a modified Anderson-Darling test statistic 

often shown in today’s software as AD* in which AD* = (1 0.2 / ).AD n  
 
Minitab personal communication indicated that they compute the associated p-values by 
interpolation of the above tables.  An unknown source developed the p-value formula 
below based on AD* which may be found in Romeu and Grethlein (2000) as well as 
other sources listed along with this reference.  Interestingly, Dr. Romeu who also wrote 
the relevant section of MIL-STD-17 which is the first source we could find for this p-
value formula states the following in a personal e-mail in 2009: “I just used the formula 
(which I imagine is an asymptotic result), and it works well under the assumptions it 
requires. This is as much as I can tell you, regarding this subject.” If any reader can track 
the original source, please let us know.  
 

1/{1 exp[ 0.1 1.24ln( *) 4.48( *)]}p value AD AD       
 
We programmed the above Weibull based steps in Excel VBA and compared our AD, 
AD* and p-value results where possible to both Minitab 15 and Palisade’s @Risk 5.0 for 
Excel.  @Risk for Excel does not calculate p-values with its Anderson-Darling output.  
For the data sets tested and shown in the table below it is surprisingly found that while 
the p-value formula was developed for AD*, it is generally more accurate for AD.  Hence 
in our VBA code, we output only AD and the associated p-value based on the formula 
modification shown below.  We find this works well for either the two or three parameter 
Weibull.  The source for each set of data is documented along with the data in the free 
web file. 
 

 that we recommend for AD 1/{1 exp[ 0.1 1.24ln( ) 4.48( )]}p value AD AD     
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Data set 

Sample 
Size, n 

Weibull 2 or 
3 

parameter?

Minitab p-
value 

AD p-value 
using formula 

AD* p-value 
using formula

MMS Pipeline Spills 36 3 0.260 0.260 0.239 

MMS Platform Spills 78 3 < 0.005 0.000114 0.0000915 

Table 9 6 2 > 0.250 0.650 0.605 

Table 7 6 2 > 0.250 0.435 0.380 

MatLab 50 2 < 0.010 0.005 0.004 

LS 1 10 3 > 0.500 0.647 0.612 

LS 2 15 3 0.124 0.124 0.103 

MTB by hand Weibull 10 2 0.071 0.086 0.067 
 
 

4.  Summary 
 

After a brief background on statistical goodness of fit tests, the empirical distribution 
function (EDF) was introduced.  Advantages of comparing the EDF to a proposed 
distribution’s CDF versus the more traditional histogram to pdf were given.  The 
adaptation of the most powerful EDF member, the Anderson-Darling AD statistic, to both 
the two and three Weibull distribution was documented.  An unknown original source of 
a p-value approximation for the modified Anderson-Darling AD* statistic was tested on 
multiple data sets.  It is recommended that this p-value approximation not be used on 
AD* but instead on the original AD statistic.  A free web zip file at 
http://faculty.otterbein.edu/WHarper/ provides many Weibull analysis tools including 
Excel VBA functions for our recommended Anderson-Darling procedure. 
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