Weibull MLE Excel VBA Function: User’s Guide and Software Documentation

This document provides information to aid the user with our Weibull MLE function as well as providing software documentation.

The user may invoke the Compute3ParmWeibull Excel function in one of two ways:
1. Type in function directly into an Excel cell such as =Compute3ParmWeibull(A2:A37,12).
2. Use the Insert Function option shown further below.

There are two possible inputs to Compute3ParmWeibull:
1. X: column of data to be analyzed
2. UserThreshold: an optional user input with the following choices:
a. Null, i.e., nothing input. This results in our version of the 3-parameter Weibull MLEs that matches Minitab.
b. 0 which equates to the standard 2-parameter Weibull (i.e., threshold = 0)
c. Value < min(X). Threshold is set to this value and shape and scale are computed correspondingly. If the user inputs a threshold ≥ min(X) the following error message appears.

[image:]

In either Excel 2003 or Excel 2007 the user may access Compute3ParmWeibull via the Insert Function dialog box. Older versions prior to Excel 2002 called this the Paste Function dialog box. In doing so you obtain the following interface to which we have added some documentation to aid the user as seen below.

[image:]

The results are seen both at the bottom of this dialog box as well as the resulting Excel cell once the OK button is clicked.

[image:]

Tom James developed the Excel VBA code for the Compute3ParmWeibull function and all the supporting functions; however, it suggested that users contact Bill Harper at wharper@otterbein.edu with any questions.

The remainder of this document focuses on the software code itself.

Notes on the Weibull Code (software documentation)
(updated 7/16/08)

Public Function ComputeWeibull(X, Optional Threshold As Double)
This is the 2 parameter Weibull.

Parameters
X is the range of cells which contains the data (Xi)
threshold is the optional desired threshold (default is 0) – must be < min { Xi}

Returns shape and scale (and threshold if provided)

Note that code is setup to allow for use of epsilon but currently the value of epsilon=0.

Computation: (from page 303-305 from the original book you loaned me)
 wShape = computedShape(threshold, epsilon).

computeShape(threshold, epsilon), computed numerically by Newton’s method (terminates when diff <= 0.000000001) as follows
	T = threshold - epsilon

Where , , , and

wScale = computeScale(wShape, threshold, epsilon) computed as follows:
	T = threshold – epsilon

Public Function Compute3ParmWeibull(X, Optional Threshold As Double)
This is the three parameter Weibull except when threshold is provided when it returns ComputeWeibull(X, threshold)

Parameters
X is the range of cells which contains the data (Xi)
threshold is the desired threshold (default is 0) – must be < min { Xi}

Returns shape, scale, and threshold

Computation: Based on notes from Bill Harper.
threshold = X1 -1
wShape = computeShape(threshold, epsilon)
– as in 2 parameter Weibull above where each X1 is replaced by (X1 – threshold) wScale (beta) = computeScale(wShape, threshold, epsilon)
– as in 2 parameter Weibull above where each X1 is replaced by (X1 – threshold) biasFactor = computeBiasFactor(wScale, wShape) -- see below
If shape <= 1 then threshold = X1 – biasFactor
Else compute threshold as follows:
 startThreshold = X1 - 2 * biasFactor
 endThreshold = X1 - 0.0000001
 threshold = searchForThreshold(startThreshold, endThreshold, delta)
 End If
 wShape = computeShape(threshold, epsilon)
 wScale = computeScale(wShape, threshold, epsilon)
 lastThreshold = threshold
End If
	

The following function may be used to retrieve the shape, scale, threshold, data size(N) computed by the most recent call to ComputeWeibull or Compute3ParmWeibull

Public Function getShape() – returns shape

Public Function getScale() – returns scale

Public Function getThreshold() – returns threshold

Public Function getN() – returns data size N

Public Function computeReliabilityCI(x As Double, ConfidenceLevel As Double
Parameters
X is the range of cells which contains the data (Xi)
ConfidenceLevel is the desired confidence level – must be between 0 and 1.

Returns the confidence interval as a string of the form “{ low, center, high}”

Computation:
alpha = 1 - ConfidenceLevel
u = wShape * Ln(x - lastThreshold) - Ln(wScale)
varU = wShape ^ 2 * (varScale / (wScale ^ 2) + u ^ 2 * varShape / (wShape ^ 4) - 2 *
 u * covShapeScale / (wShape ^ 2 * wScale))
reliabilityCI_low = Exp(-Exp(u +NormSInv(1 - alpha / 2) * Sqr(varU)))
reliabilityCI = Exp(-((x - lastThreshold) / wScale) ^ wShape)
reliabilityCI_high = Exp(-Exp(u -NormSInv(1 - alpha / 2) * Sqr(varU)))	

[image:]
The following function may be used to retrieve the confidence low, center, and high values computed by the most recent call to computeReliabilityCI

Public Function getReliabilityCI_low() – returns lower limit of CI
Public Function getReliabilityCI() - returns center of CI
Public Function getReliabilityCI_high() – returns upper limit of CI
Public Function computePercentileCI(percentile As Double, ConfidenceLevel As Double)

Parameters
percentile is the desired percentile
ConfidenceLevel is the desired confidence level – must be between 0 and 1.

Returns the percentile confidence interval as a string of the form “{ low, center, high}”

Computation:
 alpha = 1 - ConfidenceLevel
 mLn1Mp = -Ln(1 - percentile)
 x = wScale * mLn1Mp ^ (1 / wShape) + lastThreshold
 lnX = Ln(x)
 lnScale = Ln(wScale)
 lnMLn1Mp = Ln(mLn1Mp)
 varY = varScale / (wScale ^ 2) + (lnMLn1Mp ^ 2) * varShape / (wShape ^ 4) - 2 *
				lnMLn1Mp * cov(Shape,Scale) / (wShape ^ 2 * wScale)
 Kalpha = NormSInv(1 - alpha / 2)
 sqrVarY = Sqr(varY)
 yL = lnScale + lnMLn1Mp / wShape - Kalpha * sqrVarY
 yU = lnScale + lnMLn1Mp / wShape + Kalpha * sqrVarY
 percentileCI_low = Exp(yL) + lastThreshold
 percentileCI = x
 percentileCI_high = Exp(yU) + lastThreshold

[image:]
The following function may be used to retrieve the confidence low, center, and high values computed by the most recent call to computePercentileCI

Public Function getPercentileCI_low() – returns lower limit of CI
Public Function getPercentileCI() - returns center of CI
Public Function getPercentileCI_high() – returns upper limit of CI

Public Function computeAndersonDarlingGOF()
Computes the Anderson-Darling Goodness of Fit and P values.

Parameters -none

Returns a string of the form “{AndersonDarlingGOF, AndersonDarlingPValue }”

Computation:
 Sum = 0
 For i = 1 To N
 Zi = 1 - Exp(-((Data(i) - lastThreshold) / wScale) ^ wShape)
 term = (2 * i - 1) *Ln(Zi) + (2 * N + 1 - 2 * i) *Ln(1 - Zi)
 Sum = Sum + term
 Next i
 AndersonDarlingGOF = -N - (1 / N) * Sum
 AndersonDarlingPValue = 1 / (1 + Exp(-0.1 + 1.24 *Ln(AndersonDarlingGOF) +
 4.48 * AndersonDarlingGOF))

The following function may be used to retrieve the goodness of fit and p values computed by the most recent call to computeAndersonDarlingGOF

Public Function getAndersonDarlingGOF () – returns lower limit of CI
Public Function getAndersonDarlingPValue - returns center of CI

Public Function computeMaxLikelihoodConfidenceIntervals(ConfidenceLevel As Double) As String
Computes the Maximum Likelihood Confidence Intervals.

Parameters
ConfidenceLevel is the desired confidence level – must be between 0 and 1.

Returns the likelihood confidence intervals for shape and for scale as a string of the form
 “Shape Cl = “[MLCI_shape_low, MLCI_shape_high],
Scale CI = [MLCI_scale_low, MLCI_scale_high]"

Computation:
 alpha = 1 - ConfidenceLevel
 sqrVarShape = Sqr(varShape)
 sqrVarScale = Sqr(varScale)
 Kalpha =NormSInv(1 - alpha / 2)
 MLCI_shape_low = wShape / (Exp(Kalpha * sqrVarShape / wShape))
 MLCI_shape_high = wShape * Exp(Kalpha * sqrVarShape / wShape)
 MLCI_scale_low = wScale / (Exp(Kalpha * sqrVarScale / wScale))
 MLCI_scale_high = wScale * Exp(Kalpha * sqrVarScale / wScale)

[image:]

The following function may be used to retrieve the shape and scale confidence intervals computed by the most recent call to computeMaxLikelihoodConfidenceIntervals

Public Function getMLCI_shape_low() - returns the lower limit for the shape CI
Public Function getMLCI_shape_high() - returns the upper limit for the shape CI
Public Function getMLCI_scale_low() - returns the lower limit for the scale CI
Public Function getMLCI_scale_high()- returns the upper limit for the scale CI

Marco ShowComputeData
Computes the Compute3ParmWeibull function and displays the maximum likelihood estimates, A-D Goodness of Fit, and percentile confidence intervals for prevents (for 0.01, 0.05, 0.1-0.9, 0.95, 0.99.)

[image:]

Sample output from Marco ShowComputeData:

	Maximum Likelihood Estimate
	
	
	

	
	
	
	Standard
	0.99%
	CI

	
	Parameter
	Estimate
	Error
	Lower
	Upper

	
	Threshold
	8.650529
	
	
	

	
	Scale
	95.21541
	33.68542
	38.27749
	236.8487

	
	Shape
	0.774577
	0.150189
	0.470064
	1.276358

	
	
	
	
	
	

	A-D Goodness of Fit
	GOF
	0.600462
	
	
	

	
	P Value
	0.123727
	
	
	

	
	
	
	
	
	

	Percentile CIs (ConfidenceLevel = 0.99)
	
	

	
	Percent
	Lower
	Percentile
	Upper
	

	
	0.01
	8.659052
	8.90141
	16.03568
	

	
	0.05
	8.840832
	10.70813
	30.89776
	

	
	0.1
	9.388319
	13.86197
	45.46196
	

	
	0.2
	11.60894
	22.38184
	72.38372
	

	
	0.3
	15.53829
	33.8087
	100.543
	

	
	0.4
	21.54068
	48.65231
	132.7874
	

	
	0.5
	30.14502
	67.97155
	172.3661
	

	
	0.6
	42.15238
	93.70384
	224.5808
	

	
	0.7
	58.9169
	129.6506
	299.9191
	

	
	0.8
	83.23179
	184.6573
	424.0146
	

	
	0.9
	123.4676
	288.1221
	688.9006
	

	
	0.95
	160.7409
	401.192
	1021.791
	

	
	0.99
	237.4433
	692.5236
	2052.781
	

Support Functions Definitions

MinitabBiasFactor(n, wScale, wShape) = , where tau is the gamma function.

computeBiasFactor(wScale, wShape) computed by

error = 0.000001
maxTries = 10000
tries = 0
threshold = X1 -1
wShape = computeShape(threshold,0)
 wScale = computeScale(wShape, threshold, 0)
 biasFactor = computeMiniTabBiasFactor (N, wScale, wShape)
Repeat
 Tries = tries+1
 lastBiasFactor = biasFactor
 threshold = X1 - biasFactor
 wShape = computeShape(threshold,0)
 wScale = computeScale(wShape, threshold,0)
 biasFactor = MiniTabBiasFactor(n, wScale, wShape)
 Until Abs(biasFactor - lastBiasFactor) <= bError * Abs(biasFactor)
 or tries>=maxTries

likelihood(threshold, wScale, wShape), computed by
 S = N * ln(wShape / wScale)
 For i = 1 To N
 t = (Xi - threshold) / wScale
 S = S + (wShape - 1) * ln(t) - t shape
 Next
Likelihood = eS

8

image4.wmf
1

2

2

2

11

0

2

1

6(ln()ln()

(1)

nn

ii

ii

XTXT

n

n

a

p

-

==

æö

æö

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

èø

ç÷

=

ç÷

-

ç÷

ç÷

èø

åå

oleObject1.bin

image5.wmf
1

2

22

1

1

k

kk

kk

kkk

kk

C

A

B

BHC

B

a

aa

a

+

+-

=+

-

+

oleObject2.bin

image6.wmf
1

1

ln()

n

ki

i

AXT

n

=

=-

å

oleObject3.bin

image7.wmf
1

()

k

n

ki

i

BXT

a

=

=-

å

oleObject4.bin

image8.wmf
1

ln()

k

n

kii

i

CXXT

a

=

=-

å

oleObject5.bin

image9.wmf
2

1

()(ln())

k

n

kii

i

HXTXT

a

=

=--

å

oleObject6.bin

image10.wmf
1

1

1

()

k

n

s

i

i

wScaleXT

n

a

=

æö

=-

ç÷

èø

å

oleObject7.bin

image11.emf

image12.emf

image13.emf

image14.emf

image15.wmf
1/

()*(11/())

-

G+

wShape

nwScalewShape

oleObject8.bin

image1.png

image2.emf

image3.png

