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Abstract

Two-dimensional QCD with adjoint fermions has many attractive features, yet its
single-particle content remains largely unknown. To lay the foundation for a crucially
improved approximation of the theory’s spectrum, we developed a method to find the
basis of eigenstates using the symmetry structure of the asymptotic theory where pair
production is disallowed. This method produces complete sets of multi-dimensional
harmonic functions for the massless and the massive theory. Previously only part of
such a basis was known. The method presented here should be applicable to other
theories and has the promise of factoring out the long-range Coulomb-type part of
interactions. The role of pair production and implications for the bosonized theory in
the case of adjoint QCD2 are discussed.
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1 Introduction

Two-dimensional adjoint quantum chromodynamics, QCD2A, is a non-abelian Yang-
Mills theory coupled to fermions in the adjoint representation, and based on the La-
grangian

L = Tr[− 1

4g2
FµνF

µν + iΨ̄γµD
µΨ], (1)

where Ψ = 2−1/4(ψ
χ
), with ψ and χ being N ×N matrices. The field strength is Fµν =

∂µAν − ∂νAµ + i[Aµ, Aν ], and the covariant derivative is defined as Dµ = ∂µ + i[Aµ, ·].
Throughout the paper, light-cone coordinates x± = (x0 ± x1)/

√
2 are used, where x+

plays the role of a time. We will work in the light-cone gauge, A+ = 0, effectively
omitting fermionic zero modes. The theory is discussed extensively in the literature,
so we refer the reader to Refs. [1, 2, 3, 7, 11] for details. Two main features are
an asymptotic supersymmetry, and the stark contrast between the massive and the
massless versions of the theory [4]. Recently, there has been interest in three- and
four-dimensional versions of the theory [8, 9].

While the ultimate goal is a solution of the full theory, our aim here is much more
modest. As a foundation for future work, we construct in Sec. 2 a complete set of
eigenstates for the asymptotic theory based on symmetries which are broken in the full
theory, thereby expanding work begun in [14]. The basis is a set of linear combinations
of multi-dimensional harmonic functions subject to the symmetry constraints furnished
by the light-cone Hamiltonian derived from Eq. (1). Since the asymptotic theory has
disjoint sectors with different parton numbers, the basis states can be organized by
parton number r, which results in r − 1 excitation numbers responsible for the multi-
dimensionality of the solution. Technically, the basis will be appropriate only in the
high excitation number limit. Empirically, we find that even the lowest states are well
represented, probably due to their large separation in (bound state) mass. In the full
theory particle pair production couples the disjoint parton sectors, and eigenfunctions
of the full theory will be linear combinations of basis states of different parton numbers.
Thus, the harmonic basis states can be used to discuss the role of particle creation and
annihilation, as envisioned in [1]. This is done in Sec. 3.2. As applications of our
method we briefly describe a program to solve the full theory with numerical methods
in Sec. 3.1, and point out implications for the bosonized version of the theory in Sec. 3.3.
Finally, we discuss the results and general applicability of the method in Sec. 4.

2 Constructing a Harmonic Basis

2.1 Introductory Remarks

Starting from the QCD2A Lagrangian, Eq. (1), the dynamics of a system of adjoint
fermions interacting via a non-dynamical gluon field in two dimensions can be described
by a light-cone momentum operator P+ and Hamiltonian operator P−. The two op-
erators are expressed in terms of fermionic operators subject to the anti-commutation
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relation

{bij(k+), b†lk(p+)} = δ(k+ − p+)(δilδjk −
1

N
δijδkl) . (2)

To wit

P+ =

∫ ∞

0

dk k b†ij(k)bij(k) , (3)

P− =
m2

2

∫ ∞

0

dk

k
b†ij(k)bij(k) +

g2N

π

∫ ∞

0

dk

k
C(k)b†ij(k)bij(k) (4)

+
g2

2π

∫ ∞

0

dk1dk2dk3dk4

{

B(ki)δ(k1 + k2 + k3 − k4)

×(b†kj(k4)bkl(k1)bli(k2)bij(k3)− b†kj(k1)b
†
jl(k2)b

†
li(k3)bki(k4))

+A(ki)δ(k1 + k2 − k3 − k4)b
†
kj(k3)b

†
ji(k4)bkl(k1)bli(k2)

+
1

2
D(ki)δ(k1 + k2 − k3 − k4)b

†
ij(k3)b

†
kl(k4)bil(k1)bkj(k2)

}

,

with

A(ki) =
1

(k4 − k2)2
− 1

(k1 + k2)2
, (5)

B(ki) =
1

(k2 + k3)2
− 1

(k1 + k2)2
, (6)

C(k) =

∫ k

0

dp
k

(p− k)2
, (7)

D(ki) =
1

(k1 − k4)2
− 1

(k2 − k4)2
, (8)

where the trace-splitting term D(ki) can be omitted at large Nc, and the trace-joining
term is proportional to B(ki). The structure of the Hamiltonian P− displayed in Eq. (4)
is

P− = P−
m + P−

ren + P−
PC,s + P−

PC,ns + P−
PV + P−

finiteN . (9)

The mass term P−
m is dropped in the massless theory, but the renormalization operator

P−
ren needs to be included. Parton-number violating terms, P−

PV , couple blocks of dif-
ferent parton number. Parton-number conserving interactions P−

PC are block diagonal,
and may include singular(s) or non-singular(ns) functions of the parton momenta. For
details see [2, 3, 14].

The problem is cast into an eigenvalue equation

2P+P−|Ψ〉 ≡ HLC |Ψ〉 =M2|Φ〉. (10)

Namely, the light-cone Hamiltonian HLC acts on an eigenket |Ψ〉 yielding the mass
(squared) of a bound state as the eigenvalue. The eigenkets are in general linear
combinations of states of definite parton(fermion) number r

|Φr〉 =
∫ 1

r

0

dx1

(

r−1
∏

i=2

∫ 1−(r−1)x1−
∑i−1

j=2
xj

x1

dxi

)

φr(x1, x2, . . . , xr)

N
r/2
c

Tr[b(−x1) · · · b(−xr)]|0〉.

(11)
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The wavefunctions φr distribute momentum between the partons. Note that there are
only r−1 integrations since total momentum can be set to unity. The integration is over
the effective Hilbert space, which looks complicated due to elimination of redundant
operator combinations like Tr[b(x)b(y)b(z)] = Tr[b(y)b(z)b(x)]. The explicit shape of
the integration domain is displayed to emphasize that for r > 3 the wavefunction cannot
be reconstructed1 in the region around the middle of the naive Hilbert space [0, 1]r−1.

In the asymptotic limit, where only highly excited states are considered, both
parton-violation and mass terms can be neglected. As a consequence the asymptotic
theory splits into decoupled sectors with fixed parton numbers subject to ’t Hooft-like
equations

M2

g2N
φr(x1, . . . , xr) = −

r
∑

i=1

(−1)(r+1)(i+1)

∫ ∞

−∞

φr(y, xi + xi+1 − y, xi+2, . . . , xi+r−1)

(xi − y)2
dy.

(12)
The total momentum is set to unity, and thus the momentum fractions xi add up to
one,

∑

i xi = 1. Clearly, the number of partons r is even (odd) for bosonic (fermionic)
states. In [1, 14], additionally the approximation

∫ 1

0

dy

(x− y)2
φ(y) ≈

∫ ∞

−∞

dy

(x− y)2
φ(y) (13)

was used. Mathematically this is helpful because the solutions of the eigenvalue problem
then are harmonic functions, see Eq. (15). The approximation makes sense physically,
because for the highly excited states the integral is dominated by the interval around
x = y which is associated with the long-range Coulomb-type force.

In [14] we showed that the integral equation (12) can be solved algebraically using
the ansatz

|n1, n2, . . . nr−1〉 .=
r−1
∏

j

eiπnjxj = φr(x1, x2, . . . , xr), (14)

where xr = 1−∑r−1
j xj . The ansatz is motivated by its simplest (r = 2) version, which

solves the ’t Hooft equation of fundamental QCD2 [10]

M2

g2N
eiπnx = −

∫ ∞

−∞

dy

(x− y)2
eiπny = π|n|eiπnx, (15)

where the excitation number n is integer. We thus use the single-particle states of a
Hamiltonian appropriate for the problem to construct a Fock basis, inspired by [6].

Since the integral equation (12) is more involved than the ’t Hooft equation, we
have to symmetrize the ansatz (14) to comply with the constraints inherent in the
Hamiltonian (10). Namely, the solutions of the adjoint ’t Hooft problem have to be
(pseudo-)cyclic,

φr(x1, x2, . . . , xr) = (−1)r+1φr(x2, x3 . . . , xr, x1), (16)

1Meaning we cannot determine the wavefunction in this region from symmetries and its values
close to the domain boundaries. For r = 2 we can: knowing φ2(x) in [0, 1

2 ] and φ2(x) = −φ(1 − x) is
obviously enough.
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since the fermions are real. To implement this constraint we introduce the cyclic per-
mutation operator

C : (x1, x2, . . . , xr) → (x2, x3, . . . , xr, x1).

Since the Hamiltonian is unchanged by a color index reversal of its operators, the
string or trace of fermionic operators in the states (11) can be reversed at will. The
solutions can therefore be organized into sectors of definite parity under the orientation
symmetry,

T : bij → bji. (17)

The two symmetry operators act on the ansatz, Eq. (14), as follows.

C : |n1, n2, . . . , nr−1〉 → (−1)nr−1| − nr−1, n1 − nr−1, n2 − nr−1, . . . , nr−2 − nr−1〉,
T : |n1, n2, . . . , nr−1〉 → (−1)n1 | − n1, nr−1 − n1, nr−2 − n1, . . . , n2 − n1〉. (18)

In [14] we constructed eigenfunctions in the two- and three-parton sectors (r = 2, 3)
for both the massive and the massless theory, with bound-state masses

M2 = g2Nπ

(

|n1|+ |nr−1|+
r−2
∑

k=1

|nk − nk+1|
)

. (19)

The crucial ingredient of the method is the symmetrization due to C,

|n1, n2, . . . nr−1〉sym ≡ 1√
r

r
∑

k=1

(−1)(r−1)(k−1)Ck−1|n1, n2, . . . nr−1〉, (20)

where C0 = 1, because only the symmetrized states reflect the (pseudo)cyclic structure
of the Hamiltonian.

While the r = 2, 3 wavefunctions reproduce known (DLCQ) solutions of the theory
remarkably well down to the lowest states, the ansatz fails to work for r > 3 in general.
In [14], we were able to express a subset of the r = 4 solutions as a linear combination
of the symmetrized four-parton states. These solutions coincide with the ones derived
earlier [1]. To introduce notation and show the complexity of the problem, we display
a five-parton state symmetrized under C and T , i.e. of definite C and T quantum
numbers2. Note that the state consists of 4r = 20 statelets, characterized by an (r−1)-
tuple of (ordered) excitation numbers ni (here: (n,m, l, k))

|φ5, n,m, l, k; M̄
2 = |n|+ |n−m|+ |m− l|+ |l − k|+ |k|〉T = (21)

|n,m, l, k〉+ (−1)k| − k, n− k,m− k, l − k〉+ (−1)l|k − l,−l, n− l, m− l〉
+(−1)m|l −m, k −m,−m,n−m〉+ (−1)n|m− n, l − n, k − n,−n〉

+T
[

(−1)n| − n, k − n, l − n,m− n〉+ |k, l,m, n〉+ (−1)k|l − k,m− k, n− k,−k〉
+(−1)l|m− l, n− l,−l, k − l〉+ (−1)m|n−m,−m, k −m, l −m〉

]

.

Typically, these states are paired with a partner state of negative excitation numbers
to create a real wavefunction, i.e. a sine or cosine. It is convenient to do so with an
additional symmetry in mind, which we’ll introduce in the next section.

2While T is an ordinary quantum number reflecting a symmetry of the Hamiltonian, C (or rather
the set of Ci) is fixed by the constraint that the state has an (anti-)cyclic wavefunction, Eq. (16), as
required by the structure of the Hamiltonian as a sum over permutations of the parton momenta.
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2.2 Exhaustive Symmetrization

As is well known, the eigenfunctions of the massive theory have to vanish when one
parton momentum is zero to guarantee hermiticity of the Hamiltonian [10]

φn(0, x2, . . . , xn) = 0. (22)

This is sometimes called a boundary condition because it behaves as one, but this is
misleading — after all, we are trying to solve an integral and not a differential equation.
In the massive two-parton sector (or the simpler fundamental theory QCD2f [10]) this
leads to sine eigenfunctions, and to cosine eigenfunctions in the massless theory. Clearly,
the general verdict is that the Hilbert space of the theory splits into two disjoint sets
of functions: one even and the other one odd. It seems that the consequences of this
straightforward observation have not been fully realized. This is not surprising, since
the answer to the simple question — under which transformation or symmetry the
eigenfunctions are odd or even — is trivial for few partons, and fairly complicated for
many. Indeed, the symmetry in question is manifest only in the parton sectors with
r ≥ 4, because it is redundant with C and T otherwise. To get a handle on it, note that
while physically it is true that we need to manage the behavior of the wavefunctions at
the boundaries of the domain of integration, mathematically boundary conditions are
not the right tool. Rather, we have to implement symmetries that will result in the
desired behavior of the wavefunctions at the boundary — just like the C symmetrization
assures that the state so constructed is an eigenstate of the Hamiltonian. We alluded
to such a symmetry in [14], but the general method is more involved.

For massive fermions, we need the wavefunctions to vanish on the hyperplanes
characterized by xi = 0 for at least one xi. Since our wavefunction ansatz (14) is
modular, we can simply add for every term of the form eiπ

∑
j njxj another term with

opposite sign that is the same for xi = 0 but different3 for xi 6= 0. This idea can
be realized by introducing r − 1 symmetry operators Si which we might call lower-
dimensional inversions, because they invert all but one of the excitation numbers

Si : |n1, n2, . . . , ni . . . , nr−1〉 → | − n1,−n2, . . . , ni − ni+1 − ni−1(1− δ1i), . . . ,−nr−1〉. (23)

The replacement of the ith excitation number is such that the mass (squared) of the
state remains invariant, see Eq. (19). This symmetry is hidden in the three-parton
sector r = 3 because the low-dimensional inversion can be expressed in terms of the
other symmetry operations4 (S = T C2, see Eq. (26) of [14]), so that r = 4 is the lowest
parton sector in which the full symmetry unfolds5.

In Sec. 2.4 we will see that additional S operators creep in, so let’s call the set
of lower-dimensional inversions E = {S1,S2, . . . ,SN(r)}. For a given parton number
r, the maximal number N(r) of independent S operators can be determined from a
group theoretical argument. In practice, the argument boils down to combinatorics:

3Because the wavefunction would otherwise be identically zero, of course.
4At r = 2 the situation is fully degenerate with C = T = S up to signs.
5This has to be taken with a grain of salt, since at r = 4 we have S1T C2 = S2S1, so there are only

two independent S operators, not N(r) = 1
2 (r − 1)!− 1, see below.
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the number of operators of the permutation group of order r with inversion is 2r! We
derive the full symmetry group G in Sec. 2.4, and use only its generic properties here.
The group choice is intuitive as we will see, since in the r parton sector, we are in
essence permuting r objects. That the objects (the partons) carry different momenta is
irrelevant here. We are thus symmetrizing the wavefunctions under the set of N(r) S-
symmetries. Later we will see that there is only one common multiplicative Z2 quantum
number S. Tentatively, we write

|r〉Ssym =
(

1 +

N(r)
∑

i

SiSi=1

)

|r〉sym,

where |r〉sym is the ansatz state |n1, n2, . . . , nr−1〉 symmetrized under the cyclic group
〈C〉, Eq. (20).

To include all symmetries in our approach, it is convenient to make the inversion of
excitation numbers explicit with the operator

I : |n1, n2, . . . , nr−1〉 → | − n1,−n2, . . . ,−nr−1〉. (24)

Clearly, I is a Z2 operator, and states even and odd under I simply represent cosine and
sine wavefunctions, respectively. We can then write down an orthonormal set of basis
states in all sectors of the theory, characterized by their Z2 quantum numbers (T, I, S)
under the symmetry transformations T , I, and S, and their excitation numbers ni
collected in |r〉

|r〉FullSym ≡ G|r〉 =







(1 + TT ) (1 + II)√
2r!N

r−1
∑

k=0

(−)(r−1)kCk
(

1 +

N(r)
∑

i

SiSi=1

)

|r〉







, (25)

where N is the volume of the Hilbert space in the r parton sector,

N =

∫ 1

r

0

dx1

(

r−1
∏

i=2

∫ 1−(r−1)x1−
∑i−1

j=2
xj

x1

dxi

)

=
1

r!
, (26)

cf. Appendix of Ref. [14]. The excitation numbers can, in general, be even or odd
integers. Since the states, Eq. (25), are by construction eigenstates of the light-cone
Hamiltonian with masses given by Eq. (19), they furnish, in principle, a full solution6

of asymptotic QCD2A — keeping in mind that we made the approximation, Eq. (13).

2.3 Classification of States

In practice, most sectors prescribed by Eq. (25) are empty. As can be gleaned from
the symmetry operations, Eqs. (18), (23), and (24), only two sets of quantum numbers

6This construction should also settle the issue raised by ’t Hooft in the footnote of his seminal
paper [10]: since the “boundary conditions” are really symmetrizations, they must hold order by order
in Nc.
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Figure 1: Lowest DLCQ (solid lines, K = 32) and asymptotic eigenfunctions (dashed
lines) in the massless four-parton sectors, i.e. |oeo〉 states with µ ≡ m2/g2N = 0,
plotted as a function of the normalized basis state number n̄. Left (a): T+, hence
I − S−. Right (b): T−, hence I + S+. We used a rather low harmonic resolution K
to increase readability, since we do not need to worry about convergence here.

lead to viable states. Namely, only states with all even excitation numbers, and states
with alternating odd and even numbers give rise to bona fide states. In the latter case,
the first and last excitation numbers must be odd, so that these states only exist in
the even parton sectors. Even so, most of these excitation number combinations are
not viable due to cancellations of terms. For example, bona fide states are only found
in the (T±, I∓) four-parton sectors and in the (T±, I±) five-parton sectors, see Table
1. In the odd parton sectors, these four sectors (for both S±) are indeed the four
sectors necessary to describe the two T -sectors of the massive and the massless theory,
respectively. For an even number of partons, the addition of the mixed excitation
number states (|odd, even, odd〉 ≡ |oeo〉 for r = 4) does, of course, not lead to more
sectors. Rather, two even excitation number sectors do not yield bona fide states. For
an explanation, see Appx. A. For instance, in the four parton sector, only (T±, I∓, S±)
in the even excitation number sector and (T±, I∓, S∓) with mixed even and odd ni are
viable; the former are the two sectors of the massive theory, and the latter represent
the two massless sectors. This is a straightforward generalization from the earlier
findings [14] that in the two-parton sectors cosines with odd excitation number represent
the massless and sines with even excitation number the massive theory, whereas all
excitation numbers in the three-parton sector are even.

To check our musings, we make contact with known results. Our solution (25)
reproduces the results of Ref. [1] Eq. (4.13) and classifies them as |eee;T − I + S−〉
states. The wavefunctions (4.13) of [1] exhibit only two (not three) excitation numbers,

7



Figure 2: Lowest eigenfunctions of the massive theory in the four-parton sectors. Solid
lines represent numerical results as emulated in DLCQ by letting µ = 4, dashed lines
the algebraic eigenfunctions. Note that for µ = 1, the theory is supersymmetric. Left
(a): T even eigenfunctions. Right (b): T odd eigenfunctions.

because they represent a subset of the full set of wavefunctions. We thus find that there
are more states than anticipated, and that the counting of states is more involved; it
does not seem to lend itself to a string-motivated parametrization. Note that the
solution (4.13) in [1] is much more compact and looks differently (double sines versus
triple cosines), but this is a superficial disagreement and the price one has to pay for
generality: 12 terms7 of (4.13) in [1] vs. 48 terms in Eq. (25) at r = 4. Next we
check how accurate our algebraic solution is by comparing to a numerical (DLCQ)
calculation, see Fig. 1. Some masses are degenerate at r = 4 as opposed to r < 4, and
the agreement is not as good as in the three-parton sector [14], due to considerable
mixing of states of equal mass. Recall that the algebraic eigensolutions were derived by
making the approximation Eq. (13); using the correct limits of the integral evidently
induces interactions between the algebraic basis states. As can be gleaned from Fig. 1,
the discrepancy between algebraic and numerical solutions is noticeable even in the
massless sector, where the masses are not degenerate. This heralds the worsening of
our approximation at large parton number r. Namely, the effective volume of the
Hilbert space decreases as 1/r!, see Eq. (26). As a consequence, the integral looks less
and less like (

∫∞

−∞
dx)r−1, although the core motivation for the approximation (that the

region around the singularity is the most important) remains valid.
What do the exact wavefunctions tell us? First off, the massless and massive sectors

show significant differences. The massive sector is more straightforward, perhaps due
to the more stringent constraint of wavefunctions vanishing on the xi = 0 hyperplanes.

7Obviously, a sine has two exponential terms.
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Even the lowest states exhibit degenerate masses in the massive, but not the massless
theory. Also, the bound-state masses are much lower in the massless sector. This is
more surprising than it sounds, since we are omitting the mass term in the asymptotic
limit! The difference in bound-state mass is thus generated by symmetry alone. The
lowest four states are in the massive theory (µ 6= 0)

|1〉µ6=0
+−+ = |4,−2, 0〉12, |1〉µ6=0

−+− = |4, 0, 2〉12,
|2〉µ6=0

+−+ = |6,−2, 0〉16, |2〉µ6=0
−+− = |4,−2, 0〉12,

|3〉µ6=0
+−+ =

1√
2

(

|6, 10, 10〉20 + |8, 10, 6〉20
)

, |3〉µ6=0
−+− = |6, 4, 6〉16,

|4〉µ6=0
+−+ = |8, 10, 10〉20, |4〉µ6=0

−+− = |6,−2, 0〉16. (27)

In the massless theory they look like

|1〉µ=0
+−− = |1, 2, 3〉6, |1〉µ=0

−++ = |1, 0, 1〉4,
|2〉µ=0

+−− = |3,−2,−1〉10, |2〉µ=0
−++ = |1,−2,−1〉6,

|3〉µ=0
+−− = |3,−2,−3〉12, |3〉µ=0

−++ = |3, 0, 1〉8,
|4〉µ=0

+−− = |5,−2,−1〉14, |4〉µ=0
−++ = |3,−2,−1〉10, (28)

where the indices represent the TIS quantum numbers on the right-hand states, and
the mass (squared in units g2Nπ) on the left-hand states. Note that the excitation
numbers ni are not unique. For instance, at r = 4 each state has up to 2r! = 48
different tuples. One way of classifying the state is to pick one statelet’s numbers to
represent the entire state, e.g. by choosing the lowest positive number for ni followed
by the smallest absolutes |ni| as in Eq.(28).

2.4 Some Group Theory

The solutions (25) are right cosets of the subgroup B of transformations associated
with the full domain of integration (the “bulk”). Namely B is the direct product of
inversions I, reorientations T and cyclic permutations C

B =
{

1, C, C2, . . . Cr−1, T , T C, . . .T Cr−1, I, IC . . . , IT Cr−1
}

. (29)

We can construct a partition of the full group G of symmetry transformations of QCD2A

by acting on all elements of B with the lower-dimensional inversions S concerning
symmetrization on the hyperplanes forming the boundary of the integration domain
collected in the set8 E alluded to in Sec. 2.2

E =
{

S1,S2, . . .S1/2(r−1)!−1

}

.

In general, we find N(r) = 1
2
(r− 1)!− 1 independent lower-dimensional inversions. We

work with the right cosets here, because we want to make explicit the symmetrization of

8We refer to it as the exhaustive set E , because its elements are exhausting the “symmetrization
space”. It is not a group, because it is not closed under composition of its members which may produce
elements of B.
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r T I S Sector Excitation numbers of lowest states Masses (g2Nπ)
2 −+ |o〉0+ (1), (3), (5), (7) 1, 3, 5, 7

−− |e〉µ+ (2), (4), (6), (8) 2, 4, 6, 8
3 ++ |ee〉0

−

(0, 0), (2, 2), (4, 2), (4, 0), (6, 2) 0, 4, 8, 8, 12
−− |ee〉0+ (4, 2), (6, 2), (8, 2), (8, 4) 8, 12, 16, 16
+− |ee〉µ

−

(2, 0), (4, 0), (6, 2), (6, 0) 4, 8, 12, 12
−+ |ee〉µ+ (6, 2), (8, 2), (10, 4), (10, 2) 12, 16, 20, 20

4 +−− |oeo〉0+ (1, 2, 3), (3,−2,−1), (3,−2,−3), (5,−2,−1) 6, 10, 12, 14
−++ |oeo〉0

−

(1, 0, 1), (1,−2,−1), (3, 0, 1), (2,−2,−1) 4, 6, 8, 10
+−+ |eee〉µ+ (4,−2, 0), (6,−2, 0), (6, 10, 10), (8, 10, 6), (8, 10, 10) 12, 16, 20, 20, 20
−+− |eee〉µ

−

(4, 0, 2), (4,−2, 0), (6, 4, 6), (6,−2, 0) 12, 12, 16, 16
5 + + + |eeee〉0+ (0, 0, 0, 0), (2, 2, 2, 2), (2, 4, 4, 4), (4, 4, 4, 2), (4, 4, 4, 4) 0, 4, 8, 8, 8

−−− |eeee〉0
−

(4, 4, 4, 2), (4, 6, 6, 6), (4, 6, 4, 2), (6, 6, 4, 2), (4, 8, 8, 8) 8, 12, 12, 12, 16
+ +− |eeee〉µ+ (4, 6, 6, 4), (6, 8, 8, 6), (6, 10, 10, 6), (8, 10, 10, 6) 12, 16, 20, 20
−−+ |eeee〉µ

−

(8, 10, 10, 6), (8, 12, 10, 6),(8,14,12,8) 20, 24, 28
6 −++ |oeoeo〉0+ (1, 2, 3, 2, 1), (1, 2, 3, 4, 3), (5, 4, 3, 2, 1), (3, 4, 5, 4, 3) 6, 8, 10, 10

+−− |oeoeo〉0
−

(. . .)
+ +− |eeeee〉µ

−

−−+ |eeeee〉µ+

Table 1: Characteristics of the lowest states in the first few parton sectors of the
asymptotic theory including their quantum numbers TIS. The sectors are labeled
with a subscript indicating behavior under T (±) and superscripts signifying massless
(0) and massive fermions (µ). For an explanation of the discrepancy between the T
quantum number and the T sector see Appx. B.

the state under the cyclic subgroup 〈C〉, as required by the structure of the Hamiltonian,
as implicitly defined in Eq. (12). Since the order of B is |B| = 2T × 2I × rC and its
operators act on all elements of E plus the identity, a fully symmetrized state contains
2r! “statelets” owing to the 2r! independent automorphisms that can be formed on a
set of r objects (here: momentum fractions).

The general theme is hard to prove, so we simply checked with a computer algorithm
that the order of G is indeed |G| = 2r! — in particular, that it is finite. This is expected
because permutations form subgroups of the symmetric group. From a physical point
of view, permutations are re-orderings which leave the bound-state masses invariant,
and thus symmetries of the Hamiltonian.

To check the order of G we proceeded as follows. By acting on all 4r statelets
Bi|r〉 with the fundamental operator S = S1 we produced the left coset S1B. To
keep the symmetry of the Hamiltonian manifest, we need however the right coset BS1.
Recall that terms of odd C-parity must be negative in the even r sectors to ensure the
alternating signs of the permutations in the Hamiltonian Eq. (12). Since in general the
cosets are not normal, S1B 6= BS1, we do not off-hand know which C-parity the members
of a left coset of B might have. In general, both the left and the right coset will therefore
contain new operators, which we’ll have to include in our growing set of operators to
move towards group closure. We must also act with these new operators on B as well
as on the existing right cosets, which in turn will yield new operators, right and left
cosets. This process continues until no new operators arise — if the group is finite. It is
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thus a non-trivial test of our hypothesis. We find that the algorithm always converges
on the expected number of operators or statelets, namely 2r! = 240, 1440, 10080, 80640
for r = 5, 6, 7, 8 and beyond.

To construct an actual eigenfunction, we need to solve one more problem. It is
the assignment of S parity to the individual statelets, in the sense that some of them
will carry an odd power of S quantum number, and some an even power. Recall that
S2 = 1 since S is a Z2 operation. To do so it is convenient to introduce the notion
of a primary operator. Of the 1

2
(r − 1)! S operators in the r parton sector, initially

only r − 1 (associated with the r − 1 excitation numbers) seem necessary to ensure
that the wavefunction is vanishing (maximal) on the hyperplanes xi = 0 in the massive
(massless) theory, respectively. We call those r−1 operators together with an additional
operator9 Sr the primary operators. They form a conjugacy class under 〈C〉 and have
similar properties, since10

Si = Ci−1SCr−i+1. (30)

It is not hard to show that the primary operator fulfill the following pseudo-commutation
relations

CjSi = Smod′
r(i+j)

Cj and (T Cj)Si = Smod′r(r−i+j+1)(T Cj), (31)

where mod′
r is congruence modulo r shifted by one, so that S0 = Sr and Sr+1 = S1.

In other words, the S operators commute with the members of the normal subgroup
B under loss of their identity: they transmute into a different primary operator. But
then we are done! These relations allow us to compute all other operators in the sym-
metry group G, which is in essence the remainder of the subset E of lower-dimensional
inversions. In fact, we must keep adding operators until the 2r! slots in the full sym-
metry group are exhausted. For instance, the product of two primary operators can be
evaluated as follows due to the associativity group axiom11

Sk(CjSi) = (SkCj)Si = Cj(Smod′
rk−j

Si) = (SkSmod′ri+j
)Cj for 1 ≤ i, j, k ≤ r. (32)

The second half is the commutation relation for the secondary operator Smod′r(k−j)
Si.

A complete multiplication table of the group can be iteratively constructed. Finding
independent operators essentially reduces to the word problem of abstract algebra. We
display part of such a table for r = 5 in Table 2. As a corollary we note that these
identities show that the Hamiltonian symmetrization constraint (fixed signs under 〈C〉)
is intact. Namely, the T iCj component of a right coset of B of any Sk (whether primary
or not) is mapped onto the T iCj component of a right coset of some other operator Sk′.

So what are the relative signs of the individual terms? The signs within the B-
blocks (4r statelets of the right cosets BS i) are fixed by the Hamiltonian and the
T and I quantum numbers. At r = 4 the assignment of the S quantum number is
simple if counter-intuitive: both the S1 and the S2 block carry an additional S sign (32
statelets); only the identity block’s eight statelets do not acquire a sign. This seems

9While not intuitive, the last operator is necessary to complete the map Si × 〈C〉 → 〈C〉Si, since
the cyclic subgroup 〈C〉 is of order r, not r − 1.

10This relation is not unique, for instance Sr−1 = (T C)S(T C) also.
11The T version of this relation is Sk(T CjSi) = T Cj(Smod′

r
(r−k+j+1)Si) = (SkSmod′

r
(r−i+j+1))T Cj .
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unbalanced, but works due to sign-cancellations unique to the four-parton sector. At
r = 5 the orders of group and subgroups are such that we get an even split into two
“half-groups”. Namely, the five secondary operators plus the identity are S even and
the primary operators plus a peculiar secondary operator12 S9 are odd and carry an S
sign. This makes r! = 120 statelets with an S sign, and 120 without. For an algorithm
that is more universally applicable, see Appx. A.

This completes our construction of the most general solution in all parton sectors.
As a cross-check we construct the eigenfunctions in the five-parton sector and compare
them to numerical solutions in Fig. 3. Fig. 4(a) shows the comparison for some six-
parton eigenfunctions. We used the rather low harmonic resolutions K = 23 and
K = 20, because otherwise the plots get too ”crowded”; agreement is just as good at
higher K of course. As we glean from Fig. 3, the agreement is near-perfect for the
lowest T even state in the massive theory, good in the massive theory in general, and
fair in the massless theory. This might be due to the fact that the density of states is
much higher in the massless theory. Apparently, the condition that the wavefunction
vanish for zero parton momenta is quite restrictive. Given that the number of statelets
rises to 1440 at r = 6 the agreement between algebraic eigenfunctions and numerical
solution seems surprisingly good in Fig. 4(a).

It is indeed quite remarkable how perfectly the features of the theory are represented
by the properties of the harmonic basis. It is tempting to speculate that this approach
— which one might call “exhaustively-symmetrized Light-Cone Quantization (eLCQ)”
— applies to other theories, at least in two dimensions where light-cone coordinates are
the natural language. Hopefully, the treatment of the present toy model is a harbinger
of wider applicability.

3 Applications

3.1 Using “eLCQ”: Some Suggestions

Since we have found a complete set of basis states for the asymptotic theory in Sec. 2,
we can systematically approximate the full theory in a basis-function approach. This
should be pretty straightforward, but implementing the algorithm in the higher parton-
sectors is too tedious to be presented here, so we only sketch the general idea. Namely,
we can use the set of coupled integral equations derived in [3] from the Hamiltonian
Eq. (4) for the full wavefunctions fr in the r-parton sectors. The full equation couples
sectors of different parton number; fr and fr±2 appear in the equation.

We expand the full eigenfunctions fr(x1, x2, . . . , xr) into a complete set of asymptotic
eigenfunctions φr,~n

fr(x1, x2, . . . , xr) =
∑

~n

cr,~n φr,~n(x1, x2, . . . , xr),

12It commutes with the B subgroup, i.e. BS9 = S9B, which does not imply commutation of individual
subgroup elements Bi with S9: BiS9 6= S9Bi in general.
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Figure 3: Lowest eigenfunctions in all five-parton sectors. Solid lines represent nu-
merical (DLCQ) results, dashed lines the algebraic eigenfunctions. Left (a): Massless
theory (µ = 0). Right (b): Massive theory (µ = 4). The lowest two eigenfunctions are
T even, the upper two T odd.

where ~n represents a tuple of r−1 excitation numbers. Formally, the integral equation
looks like

M2fr =M2
∑

~n

cr,~nφr,~n(x1, x2, . . . , xr) = 2P+P−
∑

~n

cr,~nφr,~n(x1, x2, . . . , xr).

If we project onto the asymptotic eigenfunctions characterized by (s, ~m), we get an
equation for the associated coefficient

M2

∫

drxf ∗
s,~m(~x)fr(~x) =M2

∑

r,~n

∫

drxcr,~nf
∗
s,~mfr,~n =M2

∑

r,~n

cr,~nδs,rδ~n,~m =M2cs,~m,

where ~x represents the r momentum fractions xi, and
∫

drx the integration over the
appropriate domain subject to the constraint

∑

i xi = 1 and the removal of cyclic re-
dundancies, cf. Eq. (11). We assumed the asymptotic eigenfunctions to be orthonormal
and complete. On the left hand side, we have to evaluate the Hamiltonian matrix ele-
ments and multiply the matrix with the column vector of coefficients. In other words,
we have to solve an eigenvalue problem for the coefficient vectors. Diagonalizing the
full Hamiltonian clearly will yield the coefficients to express the full eigenfunctions as
linear combinations of the asymptotic eigenfunctions.

Now, the number of statelets in a state is equal to the order of the group |G| = 2r!
and grows exponentially. This limits the practical value of the approach. However,
it is in some sense the worst case scenario. Often, accidental symmetries arise due to
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special combinations of excitations numbers ni. For instance, the four-parton eigenfunc-
tions, Eq. (4.13) in Ref. [1], can be generated by symmetrizing the statelet |n1, 0, n2〉.
Most of its statelets will not exhibit a vanishing excitation number, yet the state as a
whole is more symmetric than the generic four-parton eigenstate. To wit, it possesses
an additional Z2 symmetry13, so that the 24 independent statelets can be cast into 12
sinusoidal functions, or into the 6 double-sines of Eq. (4.13) in Ref. [1]. Analogous sym-
metries seem to exist in all higher parton-sectors, e.g. six-parton states |n1, 0, n2, 0, n3〉
generating states14 of the form Eq. (4.15) in Ref. [1]. All symmetries will reduce the
eigenvalue problem further by block-diagonalizing the Hamiltonian and may give an in-
tuitive understanding of the bosonization process, by which trivial multi-particle states
are projected out [20].

So far the emphasis has been on symmetries of the set of excitation numbers. This
is natural, since the S symmetries were introduced exactly for this purpose in Eq. (23).
A wavefunction symmetrized with respect to its excitation numbers is clearly also
symmetrized with respect to its arguments, i.e. momentum fractions. What kind of
momentum space symmetries do the N(r) S operators represent? It should be enough
to explicitly look at only two, since all others can be derived from them. Namely,
S1 and S2 can be considered stereotypical single- and double-neighbor permutations,
respectively, since in the latter case n2 → n2 − n1 − n3 is affected by both of the
neighboring excitation numbers. It is clear that the shift in excitation numbers comes
from the following shift in momentum fractions

S1 : x1 → −x1 − x2, x2 → x2, x3 = −x3 − x1, . . . , xr−1 → −xr−1, xr → −xr − x1,

S2 : x1 → x1, x2 → −x2 − x1, x3 = −x3, . . . xr → −xr.
Apparently there is only one operation in momentum space: all (except one) momen-
tum fractions are inverted, and the fractions next to the invariant one are shifted by the
invariant fraction. This shows that the condition that the Hamiltonian be hermitian,
and hence that its eigenfunctions are invariant under S, generates a set of momentum
space symmetries that grows exponentially with the parton number. Since these gen-
erated symmetries are not obvious, the general method may be useful to determine a
full set of symmetries of a given Hamiltonian in other theories.

3.2 The Role of Pair Production

With the asymptotic solution Eq. (25) at hand, what can we say about the effect of pair
production, i.e. parton number violation? The first observation is that the subsequent
parton sectors with the same T parity have opposite I parity. In other words, the
Hamiltonian is sandwiched between a cosine and a sine wavefunction. The simplest
case is the matrix element between the two and four massless parton T even sectors15

−+〈r = 2; 1|P−
PV |r = 4; 1〉+−−,

13Its identity and S1 statelets fulfill T Z|r〉 = Z|r〉, whereas for the S2 statelets we have C2|r〉 = I|r〉,
so that half the statelets are redundant.

14Note that this works in the massless |oeoeo〉 sector, too.
15The subscripts here are the TI(S) quantum numbers, consistent with Table 1.
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where

|r = 2; 1〉−+ = cosπx,

|r = 4; 1〉+−− = sin π(x1 + 2x2 + 3x3)− sin π(3x1 + 2x2 + x3)

+ sin π(x1 − 2x2 − x3) + sin π(x1 + 2x2 − x3),

and the latter wavefunction has an interesting “disappearance” symmetry under x2 ↔
x4. In general, we will have to evaluate a matrix element of the form

−+〈n̄|P−
PV |n,m, l〉+−−,

where n̄ and n,m, l represent the excitation numbers of the two- and four-parton states,
respectively, and P−

PV is defined in Eqs. (9) and (4). Owing to the definition of Hamil-
tonian and states, Eqs. (4) and (11), we have to do eight integrations over momenta
(one plus three for the states, and four for the Hamiltonian), and have one momentum
conserving delta-function, as well as five more appearing when we commute through an-
nihilation operators. So we are left with two integrations over a trigonometric function
divided by a quadratic function of the momenta. The structure of the final expression
is therefore

−+〈n̄|P−
PV |n,m, l〉+−− ∼

∫ ∫

sin π(n′x+m′y)

(x+ y)2
dxdy,

where the integers n′ and m′ will depend on all excitation numbers n̄, n,m, l of the
two and four-parton states. This integral can be expressed in terms of cosine and
sine integrals (Ci(x), Si(x)), and is not divergent. There will be several terms, and
cancellations are possible. Thus for specific states, or in certain sectors16 the matrix
element may vanish.

This in turn raises the question whether it is systematically possible to find linear
combinations of the asymptotic eigenstates for which the annihilation matrix elements
are zero. These would then be states with a definite parton number. In other words, we
would have succeeded in summing all pair creation effects, effectively “renormalizing”
the theory, i.e. formulating it in terms of effective degrees of freedom. This program
is beyond the scope of the present note, but it seems to be viable — judging from
previous work. Namely, in [2, 3] it was shown that many of the bound states are very
pure in parton number. An open question is whether this behavior is generic or due to
the finite discretization used in [2, 3].

3.3 Implications for the Bosonized Theory

QCD2A can be bosonized by rewriting the Hamiltonian in terms of current operators
J(−p) ∼

∫

dq b(q)b(p − q) subject to a Kac-Moody algebra, see e.g. Refs. [12, 13].
Bosonization is in essence a basis transformation, so the eigenfunctions will change
while the eigenvalues, i.e. the bound state masses, remain invariant. Straightforward

16Of course, the T sector is fixed, but the result can be different in the massive and massless sectors
of the theory.
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bosonization generates a non-orthonormal basis, with states consisting of color traces
of adjoint current operators acting on a vacuum state17. Numerical approaches [13]
produce orthonormal solutions, i.e. the coordinate vectors associated with a chosen
basis (whether orthonormal or not) are mutually orthogonal and of unit length. In this
sense a basis of symmetrized harmonics as produced by our “eLCQ” method will be
orthonormal.

To get a handle on the bosonized theory, current-number changing operators can
be omitted at first [12], and one arrives at an integral equation for the bosonized
eigenfunctions φrB

M2

g2N
φrB(x1, . . . , xr) = −

r
∑

i=1

∫ ∞

−∞

φrB(y, xi + xi+1 − y, xi+2, . . . , xi+r−1)

(xi − y)2
dy, (33)

where we have used the subscript B to stress that the partons in the bosonized theory
are currents and not fermions. The equation is virtually identical with Eq. (12) save
for the non-alternating signs. These signs stemming from anti-commuting fermionic
operators are clearly absent in the bosonized theory. We should therefore be able to
describe the bosonized wavefunctions with our “eLCQ” ansatz, Eq. (25). We can-
not hope for a perfect match, because we cannot decouple sectors of different current
number. A consistent asymptotic theory does not exist due to the nature of the Kac-
Moody algebra of the current operators. There is an associated problem. Namely, the
full theory contains uninteresting non-trivial multi-particle states which interact with
the single-particle states of interest at any finite resolution in discretized versions of the
theory [7, 14]. Indeed, only a few single-particle states have hitherto been identified
as such. Furthermore, bosonization only works for massless fermions, so there is no
massive sector. Hence, our comparison of numerical and algebraic wavefunctions will
be rather limited. Of course, in the bosonized theory there is a bosonic and also a
fermionic sector. In the latter, the basis states are different owing to the elimination
of cyclic symmetry due to the existence of a unique fermionic operator (the “adjoint
vacuum”). Here, we will focus on the bosonic sector of the bosonized theory. This is a
real test of our ansatz, since the symmetrization clearly cannot be the same as in the
theory with fermions. The “eLCQ” ansatz (25) for the two-current wavefunction φ2B

is
φ2B = einx + (−1)ne−inx

(compare to Eq. (40) which has a minus sign between the terms). Therefore we “pre-
dict” that the massless states with odd n will be sines in the bosonized theory, not
cosines as in the fermionic theory. This is consistent with Ref. [12], and also the nu-
merical bosonized eigenfunctions in Fig. 4(b) are consistent with our ansatz18. Note
that numerical approaches such as DLCQ use different bases for the fermionic and

17Either the traditional vacuum state or an “adjoint vacuum”, represented by a fermionic operator
of zero momentum acting on the vacuum.

18We used φ2B = sin(πx1) and φ3B = − 1
20 [cos(πx1) + cos(πx2) + cos(πx3)] to describe the generic

features of the two wavefunctions. Note that the cosines in the higher parton sectors are consistent
with our earlier finding that wavefunctions of same T have opposite I at subsequent r.
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Figure 4: (a) Left: Massless six-parton T even eigenfunctions of asymptotic QCD2A

at K = 20. (b) Right: The two- and three-parton parts of the the lowest T even
eigenfunction of the bosonized theory at KB = 14 which is equivalent to K = 28 in the
fermionic theory. In both graphs DLCQ eigenfunctions are plotted with solid lines and
“eLCQ” or model wavefunctions with dashed lines.

bosonized theories. The fermionic theory is approximated using anti-periodic bound-
ary conditions (odd half-integer momentum fractions), whereas the bosonized theory
uses periodic boundary conditions (integer momentum fractions). Of course, regardless
of the basis used, they should be decent approximations to the algebraic wavefunction.

In sum, we find that the “eLCQ” ansatz is compatible with the known solutions of
the theory in a significantly different representation. This hints at a wider applicability
of our method. What seems crucial is that the structure of the Hamiltonian be of the
form

P− ∼
∫

dp

p2
Jij(−p)Jji(p).

In other words, the “eLCQ” ansatz is poised to solve the long-range Coulomb-type part
of a strongly interacting system. This is akin to the DLCQ ansatz which was shown
in Ref. [6] to decouple the center of mass motion of a system from its more interesting
physics.

4 Conclusion and Discussion

The goal of this paper was to find a complete set of eigenfunctions of QCD2A. We
succeeded in constructing a basis of the asymptotic theory without pair-production,
consisting of multi-dimensional harmonic functions. In order to completely and ex-
haustively symmetrize the wavefunctions in the r parton sector, a group of operators of
order 2r! is necessary and sufficient. This finite group of abstract symmetries is defined
by the relations between the generators Eqs. (30)–(32). Paradoxically, this rather com-
plicated arithmetic is based on the simple observation that “boundary conditions” on
the wavefunctions have to be implemented as symmetries in a Hamiltonian approach
(which leads to an integral equation for the eigenfunctions). Our finding that the
eigenfunctions can be constructed largely algebraically with group theory arguments is
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corroborated by comparison with numerical solutions of the theory.
At first glance our method of exhaustively symmetrizing a system quantized on

the light-cone (“eLCQ”) applies to a specific family of systems, namely theories with
adjoint degrees of freedom in one spatial dimension with a Coulomb-type long-range
interaction. It seems likely, though, that the method presented here is more widely
applicable due to its generality. In particular, exhaustive symmetrization deals with
momentum as an abstract entity, i.e. it deals with it regardless of its Lorentz structure.
There might well be requirements due to the Poincaré group, but this is not the point
here. Rather, the fact that we have r momenta requires us to symmetrize on purely
abstract grounds, rather as a preconditioning of the wavefunctions akin to the Slater
determinant implementing the anti-symmetrization requirement of the Pauli principle.

We presented evidence that “eLCQ” is a useful method at least for theories ex-
hibiting similar integral equations as QCD2A like its bosonized version as discussed in
Sec. 3.3. Other theories to which “eLCQ” can be straightforwardly applied include
two-dimensional Yang-Mills theory coupled to adjoint scalars [2] and a theory with
adjoint Dirac fermions tackled in [16]. Also, many of the supersymmetric models with
adjoint particles (for instance [19]) could be re-evaluated with the present method.

We did not have the space to fully exploit the fact that the asymptotic spectrum
of QCD2A is now completely mapped out, so there are several opportunities for future
projects. For instance, the interaction of asymptotic states and the formation of multi-
particle states can be studied. In Sec. 3.2 we laid down an initial plan how to proceed.
And while the exponential rise of terms in the eigenfunctions presents some difficulty,
one might be able to improve the precision of numerical solutions enough by using
“eLCQ” basis functions to positively identify the single-particle content of the theory.
Accidental symmetries described in Sec. 3.1 will help in this regard. Also, the structure
of the asymptotic solutions may help to disentangle salient features of this and other
theories. For instance, the “topological sector” of the theory, introduced in [7] to explain
the appearance of fermion-fermion multi-particle states in the fermionic sectors, might
be an artifact of finite group theory. As long as parton number is finite, there is a clear
separation of group properties according to their (finite) order. Some combination rules
for multi-particle states in terms of T quantum numbers found in [7] might just be the
result of such “artificial” group theoretical relations.
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A Derivation of the Group Multiplication Table

To fully understand why there is only one quantum number S associated with the large
subgroup E of S operators, we work out the details here. We start with the simplest case
r = 4. We need to show that the fully symmetrized wavefunction G|r〉 is an eigenstate
to all three S operators associated with its three excitations numbers (n,m, l). Note
that de facto there are only two independent S operators at r = 4, which we also have
to explain, along with the fact that two thirds — not half — of a state’s statelets carry
an S sign.

First we observe that the 4r members of the subgroup B naturally split into four
subsets, namely the cosets of the cyclic subgroup 〈C〉 under T , I, T , and IT . But I
is in the center of G, and therefore can be largely ignored. The cyclic structure of the
Hamiltonian means that there is a conserved quantity which we might call T C-parity.
Odd and even powers of the cyclic group carry different signs in general. Therefore an
even(odd) power has to be mapped under any S operation onto an even(odd) power of
of C. When we act with T , then the combined power has to be the same modulo two,
e.g. Cmod2j ↔ T Cmod2(j−1). There is a twist. Namely, for states with mixed even and
odd excitation numbers like |oeo〉, there is an additional sign, which shifts the relative
power under T , so we have Cmod2j ↔ T Cmod2j. So the subgroup B has two subsets even
and odd under T C-parity, Be and Bo. We call their members (i.e. combinations like
IiT tCc) Ze

j and Zo
j . At r = 4 we have the pseudo-commutation relations19

SiZe
j = Ze

jSi, (identity preserving) (34)

SiZe
j = Ze

jSmod′2(i+1). (identity swapping) (35)

Note that
SiBe = BeSi and SiBo = BoSmod′

2
(i+1),

i.e. while the individual operators do not pseudo-commute, they remain in the same
subset. At r = 4 the following additional identities hold

S1S2 = TZo
kS1 = TS2Zo

k , (36)

S2S1 = TZo
kS2 = TS1Zo

k ,

19In full detail they read

S1C = IT S2 S1C2 = IT CS1 S1C3 = C3S2

S1T = ICS2 S1T C = IC2S1 S1T C2 = T C2S2 S1T C3 = T C3S1

S1I = IS1 S1IC = T S2 S1IC2 = T CS1 S1IC3 = IC3S2

S1IT = CS2 S1IT C = C2S1 S1IT C2 = IT C2S2 S1IT C3 = IT C3S1

S2C = CS1 S2C2 = IT C3S2 S2C3 = IT S1

S2T = IC3S1 S2T C = T CS2 S2T C2 = T C2S1 S2T C3 = IC2S2

S2I = IS2 S2IC = ICS1 S2IC2 = T C3S2 S2IC3 = T S1

S2IT = C3S1 S2IT C = IT CS2 S2IT C2 = IT C2S1 S2IT C3 = C2S2.
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for some k, so that Zo
k ∈ Bo. In fact, Zo

k = T C2. In other words, the product of the two
S-operators can be reduced to the leading one, but an odd Z operator appears as well
as an additional T operator which switches the T sign. We are now ready to calculate
the action of Si on the totally symmetrized state. There are two versions of that state.
If focusing on S symmetry properties, it is natural to write the state in terms of left
coset statelets SB|r〉

G|r = 4〉 = (Be + Bo) |r〉+ SS1 (Be + Bo) |r〉+ SS2 (Be + Bo) |r〉.

On the other hand, we have to preserve cyclical properties due to the structure of the
Hamiltonian, in which case we should use right coset statelets BS|r〉20

G|r = 4〉 = (Be + Bo) |r〉+ S (Be + Bo)S1|r〉+ S (Be + Bo)S2|r〉.

Both requirements lead to the same constraint on the quantum numbers. In the latter
case we have

S1G|r = 4; eee〉 = S1 (Be + Bo) |r〉+ SS1 (Be + Bo)S1|r〉+ SS1 (Be + Bo)S2|r〉
= (BeS1 + BoS2) |r〉+ S (Be + BoS2S1) |r〉+ S (BeS1S2 + Bo) |r〉
= S (Be + Bo) |r〉+ (Be + STBo)S1|r〉+ (STBe + Bo)S1|r〉
= SG|r = 4; eee〉 (if ST = 1), (37)

where we used Eq. (36) in the last step. The calculation goes analogously for S2. We
thus proved that a symmetrized state is an eigenstate of S1 (and S2) in the |eee;T±S±〉
sector of the theory. In the mixed sector, the Cj and T Cj−1 terms get an extra sign
for odd j due to (−1)n = (−1)l = −1. This effectively reverses T , therefore the viable
sectors are |oeo;T ∓ S±〉.

If we organize in terms of the left cosets we come to the same conclusion. To wit

S1G|r = 4; eee〉 = S1 (Be + Bo) |r〉+ S (Be + Bo) |r〉+ SS1S2 (Be + Bo) |r〉
= S1 (Be + Bo) |r〉+ S (Be + Bo) |r〉+ STS2Zo (Be + Bo) |r〉
= S [(Be + Bo) |r〉+ SS1 (Be + Bo) |r〉+ TS2 (Be + Bo) |r〉]
= SG|r = 4; eee〉 (if S = T ). (38)

The I quantum number is necessarily the opposite of T . The reason is that in the
four-parton sector the pseudo-commutation relations are such that T I-parity (−1)t+i

is conserved: commuting a (primary) S-operator with a B operator will yield a different
B operator with equal t + i (modulo two). This essentially links the identity and T

20If this seems inconsistent, recall that the fully symmetrized state is symmetrized both in B and in
S. Hence, though parts of the state will appear to be symmetrized with respect to only one symmetry,
the state as a whole has to be symmetric with respect to both operations. In general, this is only
possible for certain combinations of quantum numbers. This is the reason why many sectors of the
theory do not give rise to proper states.
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statelets of S1 to the IT and I statelets of S2, respectively. Therefore T and I have
to be different21, because otherwise the wavefunction is identically zero.

The higher parton sectors, r > 4, are harder to analyze because the pseudo-
commutation relations are more complicated. In particular, there is no identity pre-
serving relation akin to Eq. (34). Rather, we have to use Eqs. (31). Here I is decoupled,
and I-parity thus independently conserved. So we have to come up with an “operator
calculus” that allows us to evaluate the S sign of a combination of operators. As it
turns out, r = 5 is not the most general case, but tractable and yielding clues for the
generic case r > 5, so we discuss it here.

The exhaustively symmetrized state in terms of left coset elements can formally be
written as

G|r〉 = B|r〉+
N(r)
∑

j=1

SjSjB|r〉 =
(

1 +

N(r)
∑

j=1

SjSj
)

B|r〉,

where the r primary operators Sj carry an S sign, so Sj = S for j ≤ r. The non-primary
operators Sj carry an unknown sign Sj = ±S. As before, N(r) = 1

2
(r − 1)! − 1 =

11, 59, 359, . . .. The action of a primary operator Sk on an exhaustively symmetrized
state is then

SkG|r〉 =
(

Sk + S +

N(r)
∑

j=1

j 6=k

SjSkSj
)

B|r〉 = S
(

1 + SSk + S

N(r)
∑

j=1

j 6=k

SjSkSj
)

B|r〉,

where we have used Sk = S for primary operators. Due to the group axioms, the bi-
operators SkSj can be expressed in terms of a single S operator followed by operators
of the B subgroup, to wit

SkSj = SlIiT tCc,
where the index l and the powers i, t, c can be looked up in a table like Table 2. But
to reproduce the exhaustively symmetrized state G|r〉, we need to have

SSjI
iT tCc = Sl, (39)

since the B operators can be absorbed into B|r〉, whence only the quantum numbers
I, T, C re-emerge. This is the condition we can use to identify the S signs of the
non-primary operators.

As an example, consider r = 5, where we can formally set C = 1, since cyclic
permutations at odd r do not carry signs. Acting with S1, say, on G|5〉 yields the
operator indices and powers displayed in the S1 column of Table 2. Since I iT t = 1 for
all of them, Eq. (39) simplifies to SSj = Sl, so that S6 = S7 = S8 = S10 = S11 = S2

and S9 = S. Note the interplay between S9 and S10: since S1S9 ∝ S10 and S1S10 ∝ S9,
one operator gets an S sign, and the other does not. Which one it is has actually to
be decided by acting with another primary operator on the exhaustively symmetrized
state or by writing the state in terms of right coset statelets.

21In fact, this yields exactly two sectors, which makes sense in the even r sectors, since here we
have two excitation number sectors (even and mixed) for the required four (two massive and massless
sectors. In the odd r sectors there is only one condition due to the fact that there is no sign due to
relative C operators; at odd r all cyclic permutations enter with a positive sign.
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S1 S2 S3 S4 S5

S1 id S11IT S7 S11C3 S7IT
S2 S6 id S10 S6IT C3 S10IT C
S3 S7 S8 id S7IT C4 S8IT C
S4 S11C3 S6IT C3 S11IT C id S6C4

S5 S8C4 S10IT C S8IT C S10C id

S6 S2 S4IT C3 S9IT C2 S2IT C3 S4C
S7 S3 S9 S1 S3IT C4 S1IT
S8 S5C S3 S5IT C S9IT C4 S3IT C
S9 S10IT C2 S7 S6IT C2 S8IT C4 S11

S10 S9IT C2 S5IT C S2 S5C4 S2IT C
S11 S4C2 S1IT S4IT C S1C2 S9

Table 2: The E part of the group multiplication table in the five-parton sector organized
as left coset elements. Since there is a small number of primary operators, the table has
been transposed, in the sense that the column-heading operators act on the row-leading
operators, e.g. S1S2 = S6. It is obvious that E is not a subgroup of G; multiplying S
operators generates B operators.

The general algorithm is then as follows. Initially, we produce an exhaustive list of
operators by acting with primary operators on primary operators until no new operators
arise. This leads to a group multiplication table, such as Table 2 for r = 5 which can be
used to write down consistent expressions for primary operators acting on the generic
state (with yet undetermined S signs) in terms of left or right coset statelets. The
condition that the emerging state has to be an eigenstate of the primary operators
determines the signs, and may lead to a further condition on I as a function of T .
Using the sign condition Eq. (39) we start with the r known signs Sj of the primary
operators to get another r signs Sl, and iterate the process. The only time this goes
bad is when both Sj and Sl are unknown, as in the case of S9 and S10 at r = 5. Then
we go on to the next Sk. Another constraint arises from the different powers of I and
T in the group multiplication table. It will lead to a condition which determines one of
these quantum numbers in terms of the other, e.g. I = T at r = 5. At even r there will
be another condition linking (the value of) S and T , leading to two viable sectors per
(even or mixed) excitation number sector, which is what we need to produce exactly
four sectors of bound states at every r.

B Sectors, Signs, and Sines

The assignment of symmetry sectors can be confusing due to several signs and quantum
numbers involved. Let’s straighten things out by considering the simplest case, r = 2.
Here, we have φ2(x1, x2)

.
= |n〉, so we think of the wavefunction φ2 depending on two

momentum fractions xk, as being represented by an abstract vector |n〉 labeled by one

excitation number. The orientation symmetry T of the Hamiltonian acts on states only
via their fermionic operators bij(−xk). By flipping color indices, T effectively reverses
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the order of the operators and thus the order of momentum fractions. To compensate,
also the wavefunction must be rewritten with the last momentum fraction now being
first. Wavefunctions might be even or odd under this reversal, and the trace of operators
might or might not acquire a sign under T . To assign a state to a sector, we have to
take into account both behaviors. For example, a two-parton state looks like22

|Φ2〉 =
1

Nc

∫ 1

2

0

dxφ2(x, 1− x)Tr[b(−x)b(1 − x)]|0〉.

Since
T bij(−x)bji(1− x) = bji(−x)bij(1− x) = Tr[b(−x)b(1 − x)]

is T even without the need to reverse the arguments, this state belongs to the T
even sector, even though the wavefunction φ2 is odd under reversal of its arguments23,
cf. Eq. (16). Technically, the wavefunction is represented as

|φ2〉 = |n〉+ TT |n〉+ I(I|n〉 + TIT |n〉)
= |n〉+ T (−1)n| − n〉 + I| − n〉+ IT (−1)n|n〉,

and also as24

|φ2〉 = |n〉+ (−1)r+1C|n〉 = |n〉 − (−1)n| − n〉, (40)

where we recalled that T |n〉 = C|n〉 = (−1)n| − n〉. So for even n we need T = I and
the vanishing of the wavefunction at x = 0 is guaranteed by the latter equation which
produces a sine wavefunction withI = −1. Clearly, the even n states constitute the
massive sector. If n is odd, on the other hand, we get cosines with I = 1. In both
cases T = −1 even though the states are T even, T |φ2〉 = |φ2〉. In sum, its quantum
number T does not directly give away the T sector of a state25, but a negative(positive)
I quantum number always results in a wavefunction made of sines(cosines).
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