Towards solving two-

dimensional adjoint QCD with

a basis-function approach

Uwe Trittmann
 Otterbein University*

2017
2017 OSAPS Fall Meeting 2018, Toledo

September 29, 2018
*Thanks to OSU for hospitality!

$\mathrm{QCD}_{2 \mathrm{~A}}$ is a 2D theory of quarks in the adjoint

 representation coupled by non-dynamical gluon fields ("matrix quarks")- The Problem: all known approaches are cluttered with multi-particle states (MPS)
- We want "the" bound-states, i.e. single-particle states (SPS)
- Get also tensor products of these SPS with relative momentum
- SPS interact with MPS!
(kink in trajectory)
- DLCQ calculation shown, but typical (see Katr et al JHEP 1405 (2014) 143)
\Rightarrow Need to solve theory with new method \rightarrow eLCQ

Group of approximate MPS

Algebraic Solution of the Asymptotic Theory I

- Since parton number violation is disallowed, the asymptotic theory splits into decoupled sectors of fixed parton number
- Wavefunctions are determined by 't Hooft-like integral equations $\quad M^{2} p_{r}\left(x_{1}, \ldots, x_{r}\right)=-\sum_{i=1}^{r}(-1)^{(r+1)(i+1)} \int_{-\infty}^{\infty} \frac{\phi_{r}\left(y, x_{i}+x_{i+1}-\frac{1}{\left.4, x_{i+2}, \ldots, x_{i+1}-1\right)}\right.}{\left(x_{i}-y\right)^{2}} d y$
- Need to fulfill "boundary conditions" (BCs)
- Pseudo-cyclicity:

$$
\phi_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right)=(-1)^{r+1} \phi_{r}\left(x_{2}, x_{3} \ldots, x_{r}, x_{1}\right)
$$

- Hermiticity (if quarks are massive): $\phi_{n}\left(0, x_{2}, \ldots, x_{n}\right)=0$,
- Use sinusoidal ansatz with correct number of excitation numbers: $n_{i} ; i=1 \ldots r-1$

$$
\left|n_{1}, n_{2}, \ldots n_{r-1}\right\rangle \doteq \prod^{r-1} e^{i \pi n_{j} x_{j}}=\phi_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

PRD92: Algebraic Solution of the Asymptotic Theory (cont'd)

- $\begin{aligned} \phi_{3, \text { sym }}\left(x_{1}, x_{2,} x_{3}\right) & =\phi_{3}\left(x_{1}, x_{2}, x_{3}\right)+\phi_{3}\left(x_{2}, x_{3}, x_{1}\right)+\phi_{3}\left(x_{3}, x_{1}, x_{2}\right) \\ & =\phi_{3}\left(n_{1}, n_{2}\right)+\phi_{3}\left(-n_{2}, n_{1}-n_{2}\right)+\phi_{3}\left(n_{2}-n_{1},-n_{1}\right)\end{aligned}$

3 parton WF characterized by 2 excitation numbers
$\phi_{4, \mathrm{sym}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\phi_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)-\phi_{4}\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$

$$
+\phi_{4}\left(x_{3}, x_{4}, x_{1}, x_{2}\right)-\phi_{4}\left(x_{4}, x_{1}, x_{2}, x_{3}\right)
$$

©. $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots \mathrm{X}_{\mathrm{r}}\right) \rightarrow\left(\mathrm{X}_{2}, \mathrm{X}_{3}, \ldots \mathrm{X}_{\mathrm{r}}, \mathrm{X}_{1}\right)$

- Therefore: $\phi_{\mathrm{r}, \mathrm{sym}}\left(n_{i}\right) \equiv \frac{1}{\sqrt{r}} \sum_{k=1}^{r}(-1)^{(r-1)(k-1)} \mathcal{C}^{k-1} \phi_{\mathrm{r}}\left(n_{i}\right)$ is an eigenfunction of the asymptotic Hamiltonian with eigenvalue

$$
M^{2}=g^{2} N \pi^{2} \sum_{k=1}^{r}\left|n_{1}^{(k-1)}-n_{2}^{(k-1)}\right|
$$

It's as simple as that and it works - up to point

- All follows from the two-parton ("singleparticle") solution

$$
\frac{M^{2}}{g^{2} N} e^{i \pi n x}=-\int_{-\infty}^{\infty} \frac{d y}{(x-y)^{2}}{ }^{i^{i \pi n n y}}=\pi|n| e^{i \pi n x}
$$

- Can clean things up with additional symmetrization:

$$
T: \mathrm{b}_{\mathrm{ij}} \rightarrow \mathrm{~b}_{\mathrm{ji}}
$$

- Caveat: in higher parton sectors additional symmetrization is required (I said in 2015 ...)
- Want: EF should vanish if parton momenta vanish: $\phi(0, \mathrm{y}, \mathrm{z}, \ldots)=0$
- So at the boundary?
- How to achieve that? NOT with boundary conditions!
- This is not a boundary condition, but the behavior of the wavefunction on a hyperplane characterized by $\mathrm{x}_{\mathrm{i}}=0$

2017 - A New Hope

Possible, just need some group theory - and a group!

- What is the group, what is the symmetry?
- Want: EF should vanish if one or more parton momenta vanish: $\phi(0, \mathrm{y}, \mathrm{z}, \ldots)=0$
- Have: modular ansatz, ie a bunch of terms with different excitation numbers or frequencies: $\mathrm{e}^{\mathrm{i} \pi(n x+m y+. .)}$
- Unsurprisingly: $\mathrm{e}^{\mathrm{i} \pi n \mathrm{x}}-\mathrm{e}^{-\mathrm{i} \pi n \mathrm{x}}=0$ for $\mathrm{x}=0$
- Solution: add/subtract partner term with negative frequencies

The Devil is in the Details

- Must not screw up other symmetries
- Must have same mass eigenvalue
- Not impossible: construct lower-dimensional inversion, i.e. the transformation

$$
\mathcal{S}_{i}:\left|n_{1}, n_{2}, \ldots, n_{i} \ldots, n_{r-1}\right\rangle \rightarrow\left|-n_{1},-n_{2}, \ldots, n_{i}-n_{i+1}-n_{i-1}\left(1-\delta_{1 i}\right), \ldots,-n_{r-1}\right\rangle
$$

...or rather permutation of frequencies, and therefore parton momenta, so that the modified frequency safeguards the mass eigenvalue

2018 - A New Symmetry

$$
\begin{gathered}
\mathcal{B}=\left\{1, \mathcal{C}, \mathcal{C}^{2}, \ldots \mathcal{C}^{r-1}, \mathcal{T}, \mathcal{T C}, \ldots \mathcal{T C}^{r-1}, \mathcal{I}, \mathcal{I C} \ldots \mathcal{I T C}^{r-1}\right\} \\
\mathcal{E}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots \mathcal{S}_{1 / 2(r-1)!-1}\right\}
\end{gathered}
$$

- Every permutation is formally an automorphism and thus a symmetry
- Subgroup \mathcal{B} symmetrizes so that WFs are EFs of the Hamiltonian
- Subset \mathcal{E} symmetrizes so that they vanish or are max at $x_{i}=0$
- Construct a complete symmetrization under lowerdimensional inversion $S \in \mathcal{E}$ of the ansatz, but:
- S operators do not commute
- S operators do not commute with $\mathcal{T}, C \in \mathcal{B}$
- Therefore left and right cosets of \mathcal{B} are in general not the same: $S_{i} \mathcal{B} \neq \mathcal{B} S_{i}$

Solution: $\mathcal{G}=\mathcal{B} \times \mathcal{E}$

$\mathcal{E}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots \mathcal{S}_{1 / 2(r-1)!-1}\right\}$
PRD96 (2018) 045011
$\mathcal{B}=\left\{1, \mathcal{C}, \mathcal{C}^{2}, \ldots \mathcal{C}^{r-1}, \mathcal{T}, \mathcal{T C}, \ldots \mathcal{T C}^{r-1}, \mathcal{I}, \mathcal{I C} \ldots \mathcal{I} \mathcal{T} C^{r-1}\right\}$

- Symmetrize until the group is exhausted!
- "exhaustively-symmetrized Light-Cone Quantization" (eLCQ) ;-)
- The group of perturbations of r objects with inversions has a finite order: $|G|=2 r$!
- Can show this explicitly by constructing group in r parton sector
- End result: Bona fide fully symmetrized states: \mid TIS; $n>$ with quantum numbers under \mathcal{T}, I, S and r - 1 excitation numbers \boldsymbol{n}

Works! Massless Four-Parton Eigenfunctions Numerical (solid) vs. Algebraic (dashed)

four states are in the massive theory $(\mu \neq 0)$

$$
\begin{aligned}
|1\rangle_{+-+}^{\mu \neq 0}=|4,-2,0\rangle_{12}, & |1\rangle_{-+-}^{\mu \neq 0}=|4,0,2\rangle_{12}, \\
|2\rangle_{+-+}^{\mu \neq 0}=|6,-2,0\rangle_{16}, & |2\rangle_{-+-}^{\mu \neq 0}=|4,-2,0\rangle_{12}, \\
|3\rangle_{+-+}^{\mu \neq 0}=\frac{1}{\sqrt{2}}\left(|6,10,10\rangle_{20}+|8,10,6\rangle_{20}\right), & |3\rangle_{-+-}^{\mu \neq 0}=|6,4,6\rangle_{16}, \\
|4\rangle_{+-+}^{\mu \neq 0}=|8,10,10\rangle_{20}, & |4\rangle_{-+-}^{\mu \neq 0}=|6,-2,0\rangle_{16} .
\end{aligned}
$$

In the massless theory they look like

$$
\begin{aligned}
|1\rangle_{+}^{\mu=0}=|1,2,3\rangle_{6}, & |1\rangle_{-++}^{\mu=0}=|1,0,1\rangle_{4} \\
|2\rangle_{+=-}^{\mu=0}=|3,-2,-1\rangle_{10}, & |2\rangle_{-++}^{\mu=0}=|1,-2,-1\rangle_{6} \\
|3\rangle_{+=-}^{\mu=0}=|3,-2,-3\rangle_{12}, & |3\rangle_{-++}^{\mu+0}=|3,0,1\rangle_{8} \\
|4\rangle_{+--}^{\mu=0}=|5,-2,-1\rangle_{14}, & |4\rangle_{-++}^{\mu=0}=|3,-2,-1\rangle_{10},
\end{aligned}
$$

Works! Six-Parton and Bosonic Eigenfunctions

 Numerical (solid) vs. Algebraic (dashed)

6-parton fermionic theory
(adjoint fermions, 1440 terms in EFs)

Bosonized theory
(adjoint currents, non-orthogonal basis)

Using the Asymptotic Basis -

 Approximating the Full Theory- Expand the full EFs into a complete set of asymptotic EFs $f_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\sum_{\vec{n}} c_{r, \vec{n}} \phi_{r \bar{n}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)$,
- Project onto the asymptotic EFs to get an equation for the associated coefficient
$M^{2} \int d^{r} x \phi_{s, \bar{m}}^{*}(\vec{x}) f_{r}(\vec{x})=M^{2} \sum_{r, \bar{\pi}} \int d^{r} x c_{r, \bar{n}} \phi_{s, \bar{m}}^{*} \phi_{r, \bar{\pi}}=M^{2} \sum_{r, \bar{\pi}} c_{r, \bar{d}} \delta_{s, r} \delta_{\bar{n}, \vec{\pi}}=M^{2} c_{s, \bar{m}}$
- Problem: In adjoint QCD we cannot use Multhopp method of 't Hooft model \rightarrow need to evaluate P.V. integrals numerically \rightarrow Ongoing work

Conclusions/ Outlook

- Asymptotic theory was solved algebraically in all parton sectors \rightarrow Coulomb (long range) problem solved!
- Can use complete set of solutions to solve full theory numerically with exponential convergence
- Can compute pair-production matrix elements
$\langle\bar{n}| P_{P V}^{-}|n, m, l\rangle_{+--}$which look like
$\iint \frac{\sin \pi\left(n^{\prime} x+m^{\prime} y\right)}{(x+y)^{2}} d x d y$
- Can use eLCQ method to tackle other theories
- Certainly with adjoint degrees of freedom
- Possibly higher dimensions, since group structure seems independent of space-time symmetries

Thanks for your attention!

- Questions?

Not used

In other words, we need the Hamiltonian matrix elements with respect to the basis $\left\{\phi_{r, \vec{n}}\right\}$ of asymptotic eigenfunctions

$$
H_{\vec{m}, \vec{n}}=\left\langle\phi_{r, \vec{m}}\right| \hat{H}\left|\phi_{r, \vec{n}}\right\rangle=\int_{D} d^{r} x^{\prime} \phi_{r, \vec{m}}\left(\vec{x}^{\prime}\right) \int_{0}^{x_{i}+x_{i+1}} d y \frac{\phi_{r, \vec{n}}\left(y, x_{i}+x_{i+1}-y, \overrightarrow{\vec{x}}\right)}{\left(x_{i}-y\right)^{2}}
$$

where the $d^{r} x^{\prime}$ integral is $r-1$ dimensional due to the $\sum x_{i}=1$ constraint on the domain D, and the $d y$ integral is one-dimensional.

Works! Five-Parton Eigenfunctions

Numerical (solid) vs. Algebraic (dashed)

Massive theory

Works! Massive Four-Parton Eigenfunctions Numerical (solid) vs. Algebraic (dashed)

T+ (even) under string reversal (odd) $\quad \mathrm{T}$ -

The Formal Solution

To formalize our approach, it is convenient to make the inversion of frequencies explicit with the operator

$$
\begin{equation*}
\mathcal{I}:\left|n_{1}, n_{2}, \ldots, n_{r-1}\right\rangle \rightarrow\left|-n_{1},-n_{2}, \ldots,-n_{r-1}\right\rangle \tag{24}
\end{equation*}
$$

Clearly, \mathcal{I} is a Z_{2} operator, and states even and odd under \mathcal{I} simply represent cosine and sine wavefunctions, respectively. We can then write down an orthonormal set of basis states in all sectors of the theory, characterized by their Z_{2} quantum numbers (T, I, S) under the symmetry transformations \mathcal{T}, \mathcal{I}, and \mathcal{S}, and their excitation numbers n_{i}

$$
\begin{equation*}
\left\{\frac{(1+T \mathcal{T})(1+I \mathcal{I})}{\sqrt{2 r!\mathcal{N}}} \sum_{k=0}^{r-1}(-)^{(r-1) k} \mathcal{C}^{k} \sum_{i}^{N(r)} S_{i} \mathcal{S}_{\rangle}|r\rangle\right\} \tag{25}
\end{equation*}
$$

where \mathcal{N} is the volume of the Hilbert space in the r parton sector,

$$
\begin{equation*}
\mathcal{N}=\int_{0}^{1 / r} d x_{1}\left(\prod_{i=2}^{r-1} \int_{x_{1}}^{1-(r-1) x_{1}-\sum_{j=2}^{i-1} x_{j}} d x_{i}\right)=\frac{1}{r!} \tag{26}
\end{equation*}
$$

Start with asymptotic Theory:

$$
\begin{aligned}
& \frac{M^{2}}{g^{2} N} \phi_{3}\left(x_{1}, x_{2}, x_{3}\right)=-\int_{0}^{1} \frac{d y}{\left(x_{1}-y\right)^{2}} \phi_{3}\left(y, x_{1}+x_{2}-y, x_{3}\right) \\
&-\int_{0}^{1} \frac{d y}{\left(x_{2}-y\right)^{2}} \phi_{3}\left(y, x_{2}+x_{3}-y, x_{1}\right) \\
&-\int_{0}^{1} \frac{d y}{\left(x_{3}-y\right)^{2}} \phi_{3}\left(y, x_{3}+x_{1}-y, x_{2}\right) \\
& \text { is } 0 \text { ory splits into }
\end{aligned}
$$

decoupled $\operatorname{sectc} \frac{\pi M^{2}}{g^{2} N_{c}} \phi_{4}=\int_{-\infty}^{\infty} \frac{d y}{\left(x_{1}-y\right)^{2}} \phi_{4}\left(y, x_{1}+x_{2}-y, x_{3}, x_{4}\right)$

$$
-\int_{-\infty}^{\infty} \frac{d y}{\left(x_{2}-y\right)^{2}} \phi_{4}\left(y, x_{2}+x_{3}-y, x_{4}, x_{1}\right)
$$

- Wavefunctions like integral equ

$$
\begin{aligned}
\mathbf{r}=4 & +\int_{-\infty}^{\infty} \frac{d y}{\left(x_{3}-y\right)^{2}} \phi_{4}\left(y, x_{3}+x_{4}-y, x_{1}, x_{2}\right) \\
& -\int_{-\infty}^{\infty} \frac{d y}{\left(x_{4}-y\right)^{2}} \phi_{4}\left(y, x_{4}+x_{1}-y, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
M^{2} \phi_{r}\left(x_{1}, \ldots, x_{r}\right)=-\sum_{i=1}^{r}(-1)^{(r+1)(i+1)} \int_{-\infty}^{\infty} \frac{\phi_{r}\left(y, x_{i}+x_{i+1}-y, x_{i+2}, \ldots, x_{i+r-1}\right)}{\left(x_{i}-y\right)^{2}} d y
$$

Generalize: add non-singular operators

- Adding regular operators gives similar eigenfunctions but shifts masses dramatically
- Dashed lines: EFs with just singular terms (from previous slide)
- Here: shift by constant WF of previously massless state

