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QCD2A is a 2D theory of quarks in the adjoint

representation coupled by non-dynamical gluon fields 
(“matrix quarks”)

• The Problem: all known approaches 

are cluttered with multi-particle 

states (MPS)

• We want “the” bound-states, i.e. 

single-particle states (SPS)

• Get also tensor products of these 

SPS with relative momentum

• SPS interact with MPS! 

(kink in trajectory)

• DLCQ calculation shown, but typical (see Katz 

et al JHEP 1405 (2014) 143)

 Need to solve theory with 

new method  eLCQ
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Group of approximate MPS

Trouble!



Algebraic Solution of  the Asymptotic Theory I

• Since parton number violation is disallowed, the 

asymptotic theory splits into decoupled sectors of fixed 

parton number

• Wavefunctions are determined by ‘t Hooft-like integral 

equations

• Need to fulfill “boundary conditions” (BCs)

– Pseudo-cyclicity:

– Hermiticity (if quarks are massive): 

• Use sinusoidal ansatz with correct number of excitation 

numbers: ni ;  i = 1…r-1 



• “Adjoint t’Hooft eqns” are tricky to solve due to 

cyclic permutations of momentum fractions xi

being added with alternating signs

• But: Simply symmetrize ansatz under 

C: (x1, x2, x3,…xr)  (x2, x3, …xr ,x1)

• Therefore:  ϕr,sym(ni) ϕr(ni)

is an eigenfunction of the asymptotic Hamiltonian   

with eigenvalue

PRD92: Algebraic Solution of  the Asymptotic 

Theory (cont’d)

ϕ3,sym(x1, x2, x3) = ϕ3(x1,x2,x3) + ϕ3(x2,x3,x1) + ϕ3(x3,x1,x2)

= ϕ3(n1,n2) + ϕ3(-n2,n1-n2) + ϕ3(n2-n1,-n1)

ϕ4,sym(x1, x2, x3, x4) = ϕ4(x1,x2,x3,x4) – ϕ4(x2,x3,x4,x1) 

+ ϕ4(x3,x4,x1,x2) – ϕ4(x4,x1,x2,x3)

3 parton WF characterized by 2 excitation numbers



It’s as simple as that and 

it works – up to point 
• All follows from the two-parton (“single-

particle”) solution

• Can clean things up with additional symmetrization: 

T : bij  bji

T+

T+

T-

T-

• Caveat: in higher parton sectors additional symmetrization is 

required (I said in 2015…)

• Want: EF should vanish if parton momenta vanish: ϕ(0, y, z, …) = 0

– So at the boundary? 

• How to achieve that? NOT with boundary conditions!

• This is not a boundary condition, but the behavior of the 

wavefunction on a hyperplane characterized by xi=0



2017 – A New Hope

• Idea: symmetrize the 

wavefunction so it does 

what we want at xi =0

• But we need to keep it 

cyclic in the bulk! 

• What if we can have the 

cake on one side – and eat 

from the other?

•is this 
impossible? 



Possible, just need some 

group theory – and a group!

• What is the group, what is the symmetry?

• Want: EF should vanish if one or more 

parton momenta vanish: ϕ(0, y, z, …) = 0 

• Have: modular ansatz, ie a bunch of terms 

with different excitation numbers or 

frequencies: eiπ (nx+my+..)

• Unsurprisingly: eiπnx– e-iπnx = 0 for x = 0

• Solution: add/subtract partner term with 

negative frequencies



The Devil is in the Details

• Must not screw up other symmetries

• Must have same mass eigenvalue

• Not impossible: construct lower-dimensional 

inversion, i.e. the transformation

…or rather permutation of frequencies, and therefore 

parton momenta, so that the modified frequency 

safeguards the mass eigenvalue



2018 – A New Symmetry

• Every permutation is formally an automorphism

and thus a symmetry
– Subgroup B symmetrizes so that WFs are EFs of the Hamiltonian

– Subset E symmetrizes so that they vanish or are max at xi=0

• Construct a complete symmetrization under lower-

dimensional inversion S ε E of the ansatz, but:

– S operators do not commute

– S operators do not commute with T, C ε B
– Therefore left and right cosets of B are in general not the same: 

SiB ≠ BSi



Solution: G = B × E

• Symmetrize until the group is exhausted!
– “exhaustively-symmetrized Light-Cone Quantization” (eLCQ) ;-)

• The group of perturbations of r objects with 

inversions has a finite order:  |G| = 2r!

• Can show this explicitly by constructing group in 

r parton sector 

• End result: Bona fide fully symmetrized states: 

|TIS; n > with quantum numbers under T, I, S 
and r-1 excitation numbers n

PRD96 (2018) 045011



Works! Massless Four-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

T+    (even) under string reversal (odd)   T –



Works! Six-Parton and Bosonic Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

6-parton fermionic theory Bosonized theory
(adjoint fermions,                           (adjoint currents,  

1440 terms in EFs)   non-orthogonal basis)

T+



Using the Asymptotic Basis –

Approximating the Full Theory

 Expand the full EFs into a complete set of 

asymptotic EFs 

 Project onto the asymptotic EFs to get an equation 

for the associated coefficient 

 Problem: In adjoint QCD we cannot use Multhopp

method of 't Hooft model → need to evaluate P.V. 

integrals numerically → Ongoing work 



Conclusions/ Outlook

 Asymptotic theory was solved algebraically in all 

parton sectors  Coulomb (long range) problem 

solved!

 Can use complete set of solutions to solve full 

theory numerically with exponential convergence

 Can compute pair-production matrix elements

which look like

 Can use eLCQ method to tackle other theories
 Certainly with adjoint degrees of freedom

 Possibly higher dimensions, since group structure 

seems independent of space-time symmetries



Thanks for your attention!

• Questions?



Not used





Works! Five-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

Massless theory Massive theory

T+

T-

T+

T- T-

T-

T+

T+

2r!=240 terms in each eigenfunction!



Works! Massive Four-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

T+    (even) under string reversal (odd)   T –



The Formal Solution



Start with asymptotic Theory: 

Hasympt=Hren+HPC,s

• Since parton number violation is 

disallowed, the asymptotic theory splits into 

decoupled sectors of fixed parton number

• Wavefunctions are determined by ‘t Hooft-

like integral equations (xi are momentum fractions)

r =3

r =4



Generalize: add non-singular operators

• Adding regular 

operators gives 

similar 

eigenfunctions but 

shifts masses 

dramatically

• Dashed lines: EFs with just 

singular terms (from previous 

slide)

• Here: shift by constant WF of 

previously massless state


