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QCD,, Is a 2D theory of quarks in the adjoint
representation coupled by non-dynamical gluon fields

(“matrix quarks™)

« The Problem: all known approaches
are cluttered with multi-particle
states (MPS)

« We want “the” bound-states, I.e.
single-particle states (SPS)

 Get also tensor products of thes&
SPS with relative momentum

« SPS interact with MPS!

DLCQ calculation shown, but typical (see kat
et al JHEP 1405 (2014) 143)

=» Need to solve theory with
new method - eLCQ

Group of approximate MPS



Algebraic Solution of the Asymptotic Theory |

« Since parton number violation is disallowed, the

asymptotic theory splits into decoupled sectors of fixed
parton number

» Wavefunctions are determined by ‘t Hooft-like integral

equa'“ons )0+ +1/ ¢r(y, i +$+1 Y, SC+2 ”Ci+r~1)dy
* Need to fulfill “boundary cond1t1ons” (BCS)
— Pseudo-cyclicity: KGRt Rl G MR GO IR ETEs)

— Hermiticity (if quarks are massive):
e Use sinusoidal ansatz with correct number of excitation
numbers: n;, ; 1=1...r-1




PRD92: Algebraic Solution of the Asymptotic
Theory (cont’d)

Bl B3 5ym (X1 Xo X3) = G3(Xq,%0,X3) F P3(X,X3,X1) T P3(Xz,Xq,X))
= ¢3(N1,Ny) + d3(-Ny,N1-N,) + G5(Ny-Ny,-Ny)

3 parton WF characterized by 2 excitation numbers

Oy sym(Xe, Xo, X3 Xg) = Dg(Xq,X2,X3,X4) — B4(X:X3,X4,Xy)
* + (X3 X4:X1,X0) — Bg(Xg:X1,%5,X3)

s

e Therefore: (I)r,sym(ni) E%Z(ul)(r—l)(k——l)ckml (I)r(ni)
IS an eigenfunction of the asymptotic Hamiltonian

with eigenvalue [ycgsyvE S7 D — D)
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It’s as simple as that and
It works — up to point

All follows from the two-parton (“single-
particle”) solution

Can clean things up with additional symmetrization:
T: by =2 by

Caveat: in higher parton sectors additional symmetrization is

required (I said in 2015...)

Want: EF should vanish if parton momenta vanish: ¢(0,y, z, ...)=0
— So at the boundary?

How to achieve that? NOT with boundary conditions!

This 1s not a boundary condition, but the behavior of the
wavefunction on a hyperplane characterized by x.=0



2017 — A New Hope

 ldea: symmetrize the
wavefunction so It does
what we want at x; =0

» But we need to keep It
cyclic in the bulk!

 \What If we can have the
cake on one side — and eat
from the other?




Possible, just need some
group theory —and a group!

What is the group, what is the symmetry?

Want: EF should vanish if one or more
parton momenta vanish: ¢(0,y, z, ...)=0

Have: modular ansatz, ie a bunch of terms
with different excitation numbers or
frequencies: eir ("x+my+..)

Unsurprisingly: ei®™— g-mx =0 for x = 0
Solution: add/subtract partner term with
negative frequencies



The Devil 1s In the Detalls n

* Not impossible: construct lower-dimensional
Inversion, I.e. the transformation

...or rather permutation of frequencies, and therefore
parton momenta, so that the modified frequency
safeguards the mass eigenvalue



 Every permutation is formally an automorphism

and thus a symmetry
— Subgroup B symmetrizes so that WFs are EFs of the Hamiltonian
symmetrizes so that they vanish or are max at x;=0

« Construct a complete symmetrization under lower-
dimensional Iinversion of the ansatz, but:
— S operators do not commute

— S operators do not commute with 7, C ¢ B

— Therefore left and right cosets of B are in general not the same:
SiB F= le



Solution: G =B x L

PRD96 (2018) 045011

« Symmetrize until the group Is exhausted!
— “exhaustively-symmetrized Light-Cone Quantization” (eLCQ) ;-)

 The group of perturbations of r objects with
inversions has a finite order: |G| = 2r!

 Can show this explicitly by constructing group in
I parton sector

* End result: Bona fide fully symmetrized states:
ITIS; n > with quantum numbers under 7, I, S

and r-1 excitation numbers n



Massless Four-Parton Eigenfunctions

Numerical (solid) vs. Algebraic (dashed)

four states are in the massive theory (u 5 0)

I1VA70 = |4, —2,0)4,, Y20 = |4,0,2) 9,
12)70, = |6, —2, 0}, W70 — |4, -2, 0)0,
- ]. | ' i
= (16,10,10)20 +18,10,6)a0 ),  [3)%" = 16,4, 6)us,
4470 = |8, 10, 10) 20, 470 =16, —2, 0)46.

In the massless theory they look like

1AL = 1,2, 3)s, DS =11,0,1)4
2470 =13, -2, — 1}, 25 =11, -2, 1)
=0 =3, -2, —3)a, 330 = 13,0, 1)g
4= 15, -2, — 1)y, 430 =13, -2, 1),




Six-Parton and Bosonic Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

0.001

6-parton fermionic theory Bosonized theory
(adjoint fermions, (adjoint currents,
1440 terms in EFs) non-orthogonal basis)



Using the Asymptotic Basis —
Approximating the Full Theory

e Expand the full EFs into a complete set of
asymptotic EFs |

e Project onto the asymptotic EFs to get an equation
for the associated coefficient

e Problem: In adjoint QCD we cannot use Multhopp
method of 't Hooft model — need to evaluate P.V.
Integrals numerically — Ongoing work



Conclusions/ Outlook

e Asymptotic theory was solved algebraically in all
parton sectors = Coulomb (long range) problem
solved!

e Can use complete set of solutions to solve full
theory numerically with exponential convergence

e Can compute pair-production matrix elements

I \hich look like / / W&cdy

e Can use eLCQ method to tackle other theories
— Certainly with adjoint degrees of freedom
— Possibly higher dimensions, since group structure
seems Independent of space-time symmetries




Thanks for your attention!

* Questions?



Not used



In other words, we need the Hamiltonian matrix elements with respect to the basis
{&.7} of asymptotic eigenfunctions
s Lj + Liv1 — Y, i)
)2 ’
0 (i — )
where the d"x’ integral is » — 1 dimensional due to the )  z; = 1 constraint on the
domain D, and the dy integral is one-dimensional.

Hizn= (0rm|H|Orm) = | d"2'¢pm(2) dy
D




Five-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

M/ j‘M V|

||1!1'|\J

Massless theory Massive theory




Massive Four-Parton Eigenfunctions
Numerical (SO|Id) vs. Algebraic (dashed)

-=||||l\||

T+ (even) under string reversal




The Formal Solution

To formalize our approach, it is convenient to make the inversion of frequencies
explicit with the operator

T:|ny,ng, ... Ne1) = | — 11, —N2,. 00y —The—1). (24)

Clearly, T is a Z5 operator, and states even and odd under Z simply represent cosine and
sine wavefunctions, respectively. We can then write down an orthonormal set of basis
states in all sectors of the theory, characterized by their Zs quantum numbers (T, 1, 5)
under the symmetry transformations 7, Z, and &, and their excitation numbers n;

N |"|"‘::I

1 i l IT
>

where A is the volume of the Hilbert space in the r parton sector,

l---['i“-—]]lT]_—E' 1
f R (26)
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Start with asymptotic Theory:

dy

(35' y)quél(y: 1+ Ty — Y,x3, 934)
1 —

a /_O:o (m;%y)quzl(y, Ta ¥ T Y )

« \Wavefunctions r=4 +[° (xsdjy)2¢4(y,$3 24—y, 21, T2)
like integral e -

) . B /_oo (:B4C-£-?—Jy)2¢4(y’x4 Py )

T

r i Oogb’l" 'y,CCi"I_CCZ' — Y, Tip2, .-, T4 -~1.
M@y (21, ..., zp) = — Y (1) H)/ “_(‘"WW‘L)C@

=1



Generalize: add non-singular operators

« Adding regular
operators gives
similar
eigenfunctions but
shifts masses
dramatically

« Dashed lines: EFs with just
singular terms (from previous
slide)

» Here: shift by constant WF of
previously massless state




