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QCD2A is a 2D theory of quarks in the adjoint

representation coupled by non-dynamical gluon fields 
(“matrix quarks”)

• The Problem: all known approaches 

are cluttered with multi-particle 

states (MPS)

• We want “the” bound-states, i.e. 

single-particle states (SPS)

• Get also tensor products of these 

SPS with relative momentum

• SPS interact with MPS! 

(kink in trajectory)

• DLCQ calculation shown, but typical (see Katz 

et al JHEP 1405 (2014) 143)

 Need to solve theory with 

new method  eLCQ
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Group of approximate MPS

Trouble!



Algebraic Solution of  the Asymptotic Theory I

• Since parton number violation is disallowed, the 

asymptotic theory splits into decoupled sectors of fixed 

parton number

• Wavefunctions are determined by ‘t Hooft-like integral 

equations

• Need to fulfill “boundary conditions” (BCs)

– Pseudo-cyclicity:

– Hermiticity (if quarks are massive): 

• Use sinusoidal ansatz with correct number of excitation 

numbers: ni ;  i = 1…r-1 



• “Adjoint t’Hooft eqns” are tricky to solve due to 

cyclic permutations of momentum fractions xi

being added with alternating signs

• But: Simply symmetrize ansatz under 

C: (x1, x2, x3,…xr)  (x2, x3, …xr ,x1)

• Therefore:  ϕr,sym(ni) ϕr(ni)

is an eigenfunction of the asymptotic Hamiltonian   

with eigenvalue

PRD92: Algebraic Solution of  the Asymptotic 

Theory (cont’d)

ϕ3,sym(x1, x2, x3) = ϕ3(x1,x2,x3) + ϕ3(x2,x3,x1) + ϕ3(x3,x1,x2)

= ϕ3(n1,n2) + ϕ3(-n2,n1-n2) + ϕ3(n2-n1,-n1)

ϕ4,sym(x1, x2, x3, x4) = ϕ4(x1,x2,x3,x4) – ϕ4(x2,x3,x4,x1) 

+ ϕ4(x3,x4,x1,x2) – ϕ4(x4,x1,x2,x3)

3 parton WF characterized by 2 excitation numbers



It’s as simple as that and 

it works – up to point 
• All follows from the two-parton (“single-

particle”) solution

• Can clean things up with additional symmetrization: 

T : bij  bji

T+

T+

T-

T-

• Caveat: in higher parton sectors additional symmetrization is 

required (I said in 2015…)

• Want: EF should vanish if parton momenta vanish: ϕ(0, y, z, …) = 0

– So at the boundary? 

• How to achieve that? NOT with boundary conditions!

• This is not a boundary condition, but the behavior of the 

wavefunction on a hyperplane characterized by xi=0



2017 – A New Hope

• Idea: symmetrize the 

wavefunction so it does 

what we want at xi =0

• But we need to keep it 

cyclic in the bulk! 

• What if we can have the 

cake on one side – and eat 

from the other?

•is this 
impossible? 



Possible, just need some 

group theory – and a group!

• What is the group, what is the symmetry?

• Want: EF should vanish if one or more 

parton momenta vanish: ϕ(0, y, z, …) = 0 

• Have: modular ansatz, ie a bunch of terms 

with different excitation numbers or 

frequencies: eiπ (nx+my+..)

• Unsurprisingly: eiπnx– e-iπnx = 0 for x = 0

• Solution: add/subtract partner term with 

negative frequencies



The Devil is in the Details

• Must not screw up other symmetries

• Must have same mass eigenvalue

• Not impossible: construct lower-dimensional 

inversion, i.e. the transformation

…or rather permutation of frequencies, and therefore 

parton momenta, so that the modified frequency 

safeguards the mass eigenvalue



2018 – A New Symmetry

• Every permutation is formally an automorphism

and thus a symmetry
– Subgroup B symmetrizes so that WFs are EFs of the Hamiltonian

– Subset E symmetrizes so that they vanish or are max at xi=0

• Construct a complete symmetrization under lower-

dimensional inversion S ε E of the ansatz, but:

– S operators do not commute

– S operators do not commute with T, C ε B
– Therefore left and right cosets of B are in general not the same: 

SiB ≠ BSi



Solution: G = B × E

• Symmetrize until the group is exhausted!
– “exhaustively-symmetrized Light-Cone Quantization” (eLCQ) ;-)

• The group of perturbations of r objects with 

inversions has a finite order:  |G| = 2r!

• Can show this explicitly by constructing group in 

r parton sector 

• End result: Bona fide fully symmetrized states: 

|TIS; n > with quantum numbers under T, I, S 
and r-1 excitation numbers n

PRD96 (2018) 045011



Works! Massless Four-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

T+    (even) under string reversal (odd)   T –



Works! Six-Parton and Bosonic Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

6-parton fermionic theory Bosonized theory
(adjoint fermions,                           (adjoint currents,  

1440 terms in EFs)   non-orthogonal basis)

T+



Using the Asymptotic Basis –

Approximating the Full Theory

 Expand the full EFs into a complete set of 

asymptotic EFs 

 Project onto the asymptotic EFs to get an equation 

for the associated coefficient 

 Problem: In adjoint QCD we cannot use Multhopp

method of 't Hooft model → need to evaluate P.V. 

integrals numerically → Ongoing work 



Conclusions/ Outlook

 Asymptotic theory was solved algebraically in all 

parton sectors  Coulomb (long range) problem 

solved!

 Can use complete set of solutions to solve full 

theory numerically with exponential convergence

 Can compute pair-production matrix elements

which look like

 Can use eLCQ method to tackle other theories
 Certainly with adjoint degrees of freedom

 Possibly higher dimensions, since group structure 

seems independent of space-time symmetries



Thanks for your attention!

• Questions?



Not used





Works! Five-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

Massless theory Massive theory

T+

T-

T+

T- T-

T-

T+

T+

2r!=240 terms in each eigenfunction!



Works! Massive Four-Parton Eigenfunctions
Numerical (solid) vs. Algebraic (dashed)

T+    (even) under string reversal (odd)   T –



The Formal Solution



Start with asymptotic Theory: 

Hasympt=Hren+HPC,s

• Since parton number violation is 

disallowed, the asymptotic theory splits into 

decoupled sectors of fixed parton number

• Wavefunctions are determined by ‘t Hooft-

like integral equations (xi are momentum fractions)

r =3

r =4



Generalize: add non-singular operators

• Adding regular 

operators gives 

similar 

eigenfunctions but 

shifts masses 

dramatically

• Dashed lines: EFs with just 

singular terms (from previous 

slide)

• Here: shift by constant WF of 

previously massless state


