Math 2100 - Spring 2018

Lab 5 (last one!)

Names:_____

Organizing and picturing information

1. Roll one die 30 times and note the number rolled each time. Summarize your data in the following frequency table, then create a bar chart/histogram and a pie chart of your data.

Number rolled	Tally	Frequency	Relative frequency
1			
2			
3			
4			
5			
6			

Bar chart/histogram

Pie chart

Average of numbers rolled	Tally	Frequency	Relative frequency
1			
1.5			
2			
2.5			
3			
3.5			
4			
4.5			
5			
5.5			
6			

2. Roll two dice 30 times and note the *average* of the two numbers rolled each time. Summarize your data in the following frequency table, then create a bar chart/histogram of your data.

Bar chart

3. Compare the shapes of your two histograms/bar charts above. Can you explain why it makes sense that they would look the way they do?

Classical probability

- 1. There are two red balls and three yellow balls in a bag. You choose two balls at random (without replacement) from this bag.
 - (a) List all 20 simple events. (Hint: It is helpful to number balls of the same color.)

- (b) What is the probability that you draw exactly one yellow ball?
- (c) What is the probability that you draw at least one yellow ball?
- (d) You look at the first ball drawn and it's yellow. What's the probability that the second ball drawn is also yellow?

2. Our book says that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Explain, in plain English, what this means. Also, use a Venn diagram to explain why this equation is true.

3. Our book also says that $P(\overline{A}) = 1 - P(A)$. Explain, in plain English, what this means. Also, use a Venn diagram to explain why this equation is true.

Frequentist probability

1. What is the probability that a thumb tack dropped on a hard surface lands on its side? Toss one tack fifty times to approximate this probability. Are you surprised at your answer? (**Suggestion:** It is quicker to toss ten tacks five times.)

2. What is the probability that a penny spun on a hard surface lands tails up? Spin one penny fifty times to approximate this probability. Are you surprised at your answer? (**Suggestion:** It is quicker to spin, say, five pennies ten times.)