Coffee Hour Problems and Solutions

Edited by Matthew McMullen

Fall 2016

Week 1. Proposed by Matthew McMullen.
An interesting fact about a 5-12-13 right triangle is that its area and perimeter are numerically equal. Find a triangle (not necessarily right) with integer sidelengths whose area and perimeter are both numerically equal to 42 .

Solution. Let a, b, and c be the side-lengths of the triangle we are trying to find; where, without loss of generality, $a \leq b \leq c$. We are given that $a+b+c=42$ and, using Heron's formula,

$$
\sqrt{21(21-a)(21-b)(21-c)}=42
$$

which is equivalent to

$$
(21-a)(21-b)(21-c)=84=2^{2} \cdot 3 \cdot 7
$$

Put $u=21-a, v=21-b$, and $w=21-c$. Then $0<w \leq v \leq u$ and $u v w=84$. The only possible positive-integer triples (w, v, u) are $(3,4,7)$, $(2,3,14),(2,6,7),(1,2,42),(1,3,28),(1,4,21),(1,6,14)$, and $(1,7,12)$. But we also need to satisfy $u+v+w=63-(a+b+c)=21$, so the only triple that works is $(1,6,14)$. Thus, our triangle has sides of length 7,15 , and 20 .

Week 2. Proposed by Matthew McMullen.
Show that

$$
\sqrt{1+\sin x}-\sqrt{1-\sin x}=2 \sin (x / 2)
$$

for all x with $0 \leq x \leq \pi / 2$, but not for any x with $\pi / 2<x<2 \pi$.
Solution. Notice first that $\sqrt{1+\sin x} \leq \sqrt{1-\sin x}$ if and only if $\sin x \leq 0$. Thus, when $\pi \leq x<2 \pi$, the left-hand side of the equation is at most 0 and the right-hand side is positive. Now, suppose $0 \leq x<\pi$. In this case (since the
left-hand side is positive), we can square both sides of our equation to get the equivalent equation

$$
2-2 \sqrt{1-\sin ^{2} x}=4 \sin ^{2}(x / 2)
$$

or

$$
\frac{1-|\cos x|}{2}=\sin ^{2}(x / 2)
$$

When $0 \leq x \leq \pi / 2, \cos x \geq 0$ and the above reduces to the familiar identity

$$
\frac{1-\cos x}{2}=\sin ^{2}(x / 2)
$$

When $\pi / 2<x<\pi$, we would have

$$
\frac{1+\cos x}{2}=\sin ^{2}(x / 2)=\frac{1-\cos x}{2}
$$

which is only true when $\cos x=0$ (which doesn't happen between $\pi / 2$ and π).

Week 3. Proposed by Matthew McMullen.
Find

$$
\int_{1}^{\infty} \frac{\ln (x-1)}{x^{3 / 2}} d x
$$

Solution (outline). Using integration by parts with $u=\ln (x-1)$ and $d v=$ $x^{-3 / 2} d x$, we have that

$$
\int \frac{\ln (x-1)}{x^{3 / 2}} d x=\frac{-2 \ln (x-1)}{\sqrt{x}}+2 \int \frac{1}{\sqrt{x}(x-1)} d x
$$

We can use the substitution $w=\sqrt{x}$ followed by partial fraction decomposition to get

$$
\int \frac{1}{\sqrt{x}(x-1)} d x=\int\left(\frac{1}{w-1}-\frac{1}{w+1}\right) d w
$$

Thus,

$$
\int_{1}^{\infty} \frac{\ln (x-1)}{x^{3 / 2}} d x=-\left.2\left(\frac{\ln (x-1)}{\sqrt{x}}-\ln \frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\right|_{1} ^{\infty} .
$$

As x goes to ∞, the above expression goes to 0 , so our answer is

$$
2 \lim _{x \rightarrow 1^{+}}\left(\frac{\ln (x-1)}{\sqrt{x}}-\ln \frac{\sqrt{x}-1}{\sqrt{x}+1}\right)
$$

We can rewrite the expression in the above limit as

$$
\frac{(\sqrt{x}+1) \ln (\sqrt{x}+1)}{\sqrt{x}}-\frac{(\sqrt{x}-1) \ln (\sqrt{x}-1)}{\sqrt{x}} .
$$

Notice that, as x goes to 1 from the right, the first term goes to $2 \ln 2$ and the second term goes to 0 . Therefore, our answer is $4 \ln 2$.

Week 4. Proposed by Matthew McMullen.
You roll three fair dice. What is the probability that some subset of the numbers rolled sums to 4 ? (This includes rolls such as $1,2,1$ and $4,5,6$.)

Solution (idea). We will count the number of combinations, out of the 6^{3} total combinations, that "win". $6^{3}-5^{3}=91$ contain at least one 4. Of those remaining, if the first roll is a 5 or 6 , then the next two rolls must be either a 1 and a 3 (in either order), or two 2 s . This gives us 6 more winning rolls. In a similar way, we can go through all of the possibilities of winning (that haven't already been counted) if a 3,2 , or 1 is rolled first. There are 10 new ways to win if a 3 is rolled first, 12 new ways to win if a 2 is rolled first, and 12 new ways to win if a 1 is rolled first. The probability we want is therefore

$$
\frac{91+6+10+12+12}{6^{3}}=\frac{131}{216} .
$$

Week 5+. Proposed by Matthew McMullen.
You roll n fair dice. What is the probability that some subset of the numbers rolled sums to k, where $1 \leq k \leq 6 n$?

