
Coffee Hour Problems and Solutions

Edited by Matthew McMullen

Spring 2016

Week 1. Proposed by Matthew McMullen.

Find

lim
n→∞

∫ e

1

n(lnx)n

x2
dx.

Solution. Using the substitution u = lnx and the Maclaurin series for y = e−u

gives us ∫ e

1

n(lnx)n

x2
dx =

∫ 1

0

nune−u du

=

∫ 1

0

∞∑
k=0

n(−1)kuk+n

k!
du

=

∞∑
k=0

n

k + n+ 1

(−1)k

k!
.

Thus,

lim
n→∞

∫ e

1

n(lnx)n

x2
dx = lim

n→∞

∞∑
k=0

n

k + n+ 1

(−1)k

k!

= 1

∞∑
k=0

lim
n→∞

n

k + n+ 1

(−1)k

k!

=

∞∑
k=0

(−1)k

k!

= e−1.

1Of course, some justification is needed for this step!
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Week 2. Proposed by Matthew McMullen.

In the Powerball lottery, five numbers from 1 to 69 are chosen (without replace-
ment) and then one “Powerball number” from 1 to 26 is chosen (which may or
may not match one of the first five numbers). To win the grand prize, you have
to match the first five numbers (in any order) and the Powerball number. If the
probability that at least one ticket wins the grand prize is 0.75, how many tick-
ets were sold? (And what assumptions are you using to answer this question?)

Solution. There are a total of

69 · 68 · 67 · 66 · 65

5!
· 26 = 292, 201, 338

different combinations of numbers that can be chosen; so p = 1
292,201,338 is the

probability of winning the grand prize. Let n be the number of tickets that were
sold. We will assume that the number of grand prize-winning tickets (out of n)
follows a binomial distribution.2 We are given a 0.25 probability of no winning
tickets, which means that

(1− p)n = 0.25,

or

n =
ln(0.25)

ln(1− p)
≈ 405,076,808 .

Week 3. Proposed by Matthew McMullen.

Before the recent $1.6 billion Powerball drawing, it was reported that approxi-
mately 86% of all possible combinations were chosen. Assuming that this means
that there is an 86% chance that at least one ticket will win the grand prize, find
the probability that there are exactly three grand prize-winning tickets (which
is what actually happened).

Solution. We first use the same technique (and assumption) as in the previous
solution to estimate the number of tickets sold, n. For p = 1

292,201,338 , we have
to solve

(1− p)n = 0.14;

so

n =
ln(0.14)

ln(1− p)
≈ 574,500,440 .

Now, since n is large and np ≈ 1.966 is relatively small, the probability we
want is well-approximated by a Poisson distribution with mean 1.966.3 The

2Is this a realistic assumption?
3Good luck trying to find exact probabilities using a binomial distribution!
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probability that there are exactly three grand prize-winning tickets is therefore
approximately

1.9663e−1.966

3!
≈ 0.177.

(It’s interesting to note that this is slightly more than the probability of having
no grand prize-winning tickets. On the other hand, the probability of having
at least three grand prize-winning tickets can be shown to be approximately
0.314.)

Week 4. Proposed by Matthew McMullen.

Define an to be the number formed by concatenating 100,000 n times (for ex-
ample, a3 = 100, 000, 100, 000, 100, 000). Find all k such that 2016 divides ak.

Solution. Write

ak = 105
k−1∑
n=0

106n.

Clearly, 25 divides each ak. Also, looking modulo 9, we have

ak ≡
k−1∑
n=0

1 = k.

Thus, ak is divisible by 9 if and only if k is divisible by 9. Looking modulo 7,
we have

105 ≡ 35 = 3 · 92 ≡ 3 · 22 = 12 ≡ 5,

and
106 = 10 · 105 ≡ 3 · 5 = 15 ≡ 1;

so,

ak ≡ 5

k−1∑
n=0

1 = 5k.

Since 5 and 7 are relatively prime, ak is divisible by 7 if and only if k is divisible
by 7.

Since 7 and 9 are relatively prime, we can put all of this together to see that
ak is divisible by 2016 = 25 · 7 · 9 if and only if k is a positive integer multiple
of 63. (Fun fact: a63/2016 has 374 digits.)
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Week 5. Proposed by Matthew McMullen.

Find the number of positive-integer ordered pairs (a, b) such that both a and b
are less than 100, ab ≤ 500, and ab is divisible by 100.

Solution (outline). The idea is to count the number of divisors of 100k, for
k = 1, 2, 3, 4, 5, that are between k and 100, exclusive. When k = 1 we get 7
such divisors, when k = 2 we get 8 such divisors, when k = 3 we get 12 such
divisors, when k = 4 we get 9 such divisors, and when k = 5 we get 4 such
divisors. So the answer is 7 + 8 + 12 + 9 + 4 = 40 .

Week 6. Proposed by Matthew McMullen.

For n ≥ 1, define an to be the number of ordered pairs (a, b) of positive integers
less than n with the property that n divides ab. Show that an is odd if and only
if n is a multiple of 4.

Solution. For a 6= b, if (a, b) is a valid pair, then (b, a) is another valid pair.
Therefore, the only way we can have an odd number of total pairs is if there
are an odd number of valid pairs of the form (a, a). In other words, an is
odd if and only if there is an odd number of perfect squares in the set Sn =
{n, 2n, 3n, . . . , (n− 1)n}.

Suppose n = dc2, where d is square free (or 1). Then ln is a perfect square
only when l = dm2, for some m. In order for ln to be in Sn, however, dm2 =
l < n = dc2; i.e., m = 1, 2, . . . , c− 1. Thus, the number of perfect squares in Sn
is c− 1.

We then have that an is odd if and only if n = dc2, where d is square free
(or 1) and c is even. But c is even if and only if n is a multiple of 4.

Week 7. Proposed by Matthew McMullen.

Let P be a polynomial of degree k that has n independent variables. Find the
maximum number of terms P can have.

Solution (outline). The answer is
(
n+k
k

)
, which we will prove using induction

on k. This is clearly true for k = 0. One can show (not sure of the best way to
do it, but it’s definitely true!) that the maximum number of terms of degree k
is
(
n+k−1

k

)
, for all k ≥ 0.

Now suppose that the maximum number of terms a degree k polynomial in n
independent variables can have is

(
n+k
k

)
. Then the maximum number of terms
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a degree k + 1 polynomial in n independent variables can have is(
n+ k

k

)
+

(
n+ k

k + 1

)
=

(
n+ k + 1

k + 1

)
.

Weeks 8 and 9. Proposed by Matthew McMullen.

For integers k and n with 1 ≤ k ≤ n, define d∗(n, k) to be the number of divisors
of kn in the interval [k, n]. Show that

n∑
k=1

gcd(n, k) =

n∑
k=1

d∗(n, k).

“Solution”. The left-hand side of the above equality is well-studied and is
known to be multiplicative with

pr∑
k=1

gcd(pr, k) = pr−1((p− 1)r + p)

for prime p. (Thus, we have a closed-form (but ugly!) representation for the
gcd-sum.) With some routine (but ugly!) work, we can show that

pr∑
k=1

d∗(pr, k) = pr−1((p− 1)r + p)

for prime p. It remains only to show that the right-hand side is multiplicative,
and if you have any suggestions for how to do this, let me know!

Week 10. From the 2016 AIME I.

For integers a and b consider the complex number

√
ab+ 2016

ab+ 100
−

(√
|a+ b|

ab+ 100

)
i.

Find the number of ordered pairs of integers (a, b) such that this complex num-
ber is a real number.
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Solution. Let z denote the complex number in question. Suppose that ab +
2016 ≥ 0. Then z exists and is real if and only if a = −b and ab 6= −100. In
other words, z exists and is real if and only if a 6= ±10 and |a| ≤ b

√
2016c = 44.

In this case there are 87 possible values of a (and therefore 87 pairs (a, b)):
0,±1,±2, . . . ,±9,±11,±12, . . . ,±44.

Now suppose that ab+ 2016 < 0. Then

z =

(√
−(ab+ 2016)−

√
|a+ b|

ab+ 100

)
i

is real only if
√
−(ab+ 2016) =

√
|a+ b|. So we need either a+b = ab+2016 or

a+ b = −ab− 2016. The first equation is equivalent to (a− 1)(b− 1) = −2015.
By looking at the factors of 2015 and remembering that ab < −2016, we can
see that there are eight pairs (a, b) that satisfy this equation:

(2,−2014), (6,−402), (14,−154), (32,−64), (−64, 32), (−154, 14), (−402, 6), (−2014, 2).

Similarly, there are eight pairs that satisfy the equation a+ b = −ab− 2016.
Putting these two cases together gives us 87 + 8 + 8 = 103 possible pairs.

Week 11. From the 2016 AIME II.

Find the number of sets {a, b, c} of three distinct positive integers with the prop-
erty that the product of a, b, and c is equal to the product of 11, 21, 31, 41, 51,
and 61.

Solution. See http://artofproblemsolving.com/wiki/index.php?title=

2016_AIME_II_Problems/Problem_8 for a solution.

Week 13. Proposed by Matthew McMullen.

Let r > 0 and let E be the top half of an ellipse centered at the origin and
passing through the points (−r, 0) and (r, 0). Define f(x) = 0 for |x| ≥ r and
f(x) = E for |x| ≤ r. If f(x) is the probability density function for the random
variable X, find Var(X).

Solution. Suppose that the ellipse goes through the point (0, s). Since f is
a probability density function, the area between E and the x-axis must be 1.
Therefore, πrs

2 = 1, or s = 2
πr . From this we see that, when |x| ≤ r,

f(x) =
2
√
r2 − x2
πr2

.
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Now, since f is an even function, E(X) = 0; and hence,

Var(X) =

∫ r

−r
x2f(x) dx

= 2

∫ r

0

x2f(x) dx

=
4

πr2

∫ r

0

x2
√
r2 − x2 dx

(x=r sin θ)
=

r2

π

∫ π/2

0

sin2(2θ) dθ

(u=2θ)
=

r2

2π

∫ π

0

sin2 u du

=
r2

4
.

Week 15+. Based on A1 on the 2015 Putnam Exam.

Let A and B be points on the same branch of the hyperbola xy = 1. Suppose
that P is a point lying between A and B on the hyperbola such that the area
of the triangle APB is as large as possible. Show that the region bounded by
the hyperbola and the chord AP has the same area as the region bounded by
the hyperbola and the chord PB.

Conversely, let f(x) be a strictly convex function on some interval I where,
for any two points A and B on f , the point P between A and B on f that
maximizes the area of triangle APB also satisfies the condition that the region
bounded by f and the chord AP has the same area as the region bounded by f
and the chord PB. Is f necessarily the branch of a hyperbola?

Solution. See http://kskedlaya.org/putnam-archive/2015s.pdf for a so-
lution to the first part. I’m still working on the second part. Let me know if
you have any insight!
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