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Week 1. Proposed by Matthew McMullen.

We all (hopefully!) know how to rationalize the denominator of an expression
like 1√

2+
√
3
. This week’s problem is to rationalize the denominator of 1√
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√
3+
√
5
.

As an extra challenge, can you rationalize the denominator of 1√
2+ 3√3

?

Solution. For the first expression, we have
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For the second expression we will use the factorization

u6 − v6 = (u+ v)(u5 − u4v + u3v2 − u2v3 + uv4 − v5)

and the facts that
√

2 = 21/2 = 23/6 = 81/6 = 6
√

8 and 3
√

3 = 31/3 = 32/6 =
91/6 = 6

√
9. Put u = 6

√
8, v = 6

√
9, and C = u5 − u4v + u3v2 − u2v3 + uv4 − v5.

From the above factorization, we have that (u+ v)C = u6 − v6 = −1. Then
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Week 2. Proposed by Matthew McMullen

An interesting fact about the numbers 1,2, and 3 is that both their product and
sum are equal to 6. Can you find three other rational numbers that satisfy this
property? How many different sets of three rational numbers can you find that
satisfy this property?

Solution. Suppose a
d , bd , and c

d are three rational numbers such that a
d+ b

d+ c
d =

6 and a
d ·

b
d ·

c
d = 6. Then a+ b+ c = 6d and abc = 6d3. Hoping for the best, we

put d = 2 and look for integers a, b, and c with a+ b+ c = 12 and abc = 48. By
inspection, a = −1, b = −3, and c = 16 works. Thus, {− 1

2 ,−
3
2 , 8} is one such

set.
To generate more sets, we can use techniques from the study of elliptic

curves. Suppose x + y + z = 6 = xyz. Then we are looking for rational points
on the curve C defined by xy(6 − x − y) = 6. Given a point (x0, y0) on C,
find the tangent line at that point and look to see where else it intersects C. If
(x0, y0) is a rational point on C, then this intersection point is another rational
point on C.

Leaving off the details, it can be shown that the line tangent to C at (2, 1)
also intersects C at (8,−1/2). Moreover, the line tangent to C at (8,−1/2)
also intersects C at (−32/323,−361/68). So another solution to our problem is
the set {− 32

323 ,−
361
68 ,

867
76 } Continuing in this way, we can find other (infinitely

many?!) solutions. Just for fun, the next solution given by this technique is the
set {

−14927155328

32322537971
,

79790995729

9885577384
,−39280614987

24403407416

}
.

Week 3. Proposed by Matthew McMullen

Find
lim
n→∞

(
n+1
√

(n+ 1)!− n
√
n!
)
.

Solution (kinda). It can be shown that

n
√
n! =

n

e
+

ln(2πn)

2e
+ εn,

where εn → 0 as n→∞. Therefore,

n+1
√

(n+ 1)!− n
√
n! =

1

e
+

ln
(
1 + 1

n

)
2e

+ δn,

where δn → 0 as n→∞. So the answer to our problem is 1
e .

2



Week 4. Proposed by Matthew McMullen

Let (an) and (bn) be sequences of real numbers with bn 6= 0 for all n. Is it true
that limn→∞

an
bn

= 1 if and only if limn→∞(an − bn) = 0? Is either direction of
the implication true? If not, can you find counterexamples for both directions?
Can you “fix” the implication by putting more restrictions on (bn)?

Solution. Neither direction of the implication is true. If an = n+1 and bn = n,
then an

bn
→ 1, but an − bn → 1. If an = 2

n and bn = 1
n , then an − bn → 0, but

an
bn
→ 2.
Rewriting

an − bn = bn

(
an
bn
− 1

)
and

an
bn

=
1

bn
(an − bn) + 1

shows that both directions of the implication will be true as long as both (bn)
and (1/bn) are bounded sequences.

Week 5. Proposed by Matthew McMullen

Let f(x) = 1−
√
1−4x
2x . Find limx→0 f

′′(x). As an added challenge, can you find

limx→0 f
(n)(x)?

Solution. A (messy) way to do this is to rationalize the numerator of f to get
f(x) = 2

1+
√
1−4x (for x 6= 0), then take the second derivative and plug in 0. In

this way, you’ll find limx→0 f
′′(x) = 4.

A more elegant way to do this is to find the Taylor Polynomial of f(x) about
x = 0 and use its coefficients to read off limx→0 f

(n)(x) for all n. By repeatedly
taking derivatives and plugging in 0, one can show that

√
1− u = 1−

∞∑
n=0

2(2n)!un+1

4n+1n!(n+ 1)!
.

From this, it is easy to see that

1−
√

1− 4x

2x
=

∞∑
n=0

(2n)!

n!(n+ 1)!
xn.1

Then limx→0 f
(n)(x) = (2n)!

(n+1)! .

1This is the generating function for the Catalan numbers!
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Week 6. Problem A1 from the 2014 Putnam Competition

Prove that every nonzero coefficient of the Taylor series of

(1− x+ x2)ex

about x = 0 is a rational number whose numerator (in lowest terms) is either 1
or a prime number.

Solution. Using the fact that

ex =

∞∑
n=0

xn

n!
,

it can be shown that

(1− x+ x2)ex = 1 +

∞∑
n=2

n− 1

n(n− 2)!
xn.

For n− 1 prime, we’re done; so suppose n− 1 = pk for some prime p and some
integer k > 1. If k 6= p, then both k and p will appear in (n − 2)!, and the
numerator of the nth coefficient will be 1. If k = p, then at least one p will
appear in (n − 2)!, and the numerator of the nth coefficient will be either 1 or
p.

Week 7. Proposed by Dave Stucki and Matthew McMullen

Find all real numbers x such that

(x2 − 9x+ 17)x
2−8x+7 = 1.

Solution. The only way this equation can hold is if the base is 1, the base is
nonzero and the exponent is 0, or the base is −1 and the exponent is an even
integer.

The base is 1 if and only if x2 − 9x+ 16 = 0, or x = 9±
√
17

2 . The exponent
is 0 if and only if 0 = x2 − 8x + 7 = (x − 1)(x − 7), or x = 1 or x = 7 (and
in both of these cases, the base is nonzero). The base is −1 if and only if
0 = x2 − 9x+ 18 = (x− 3)(x− 6). If x = 3, we have (−1)−8 = 1; and if x = 6,
we have (−1)−5 = −1.

So the solution set is
{

1, 3, 7, 9+
√
17

2 , 9−
√
17

2

}
.
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Week 8. From Stewart’s Calculus.

A cone of radius r centimeters and height h centimeters is lowered point first
at a rate of 1 cm/s into a tall cylinder of radius R centimeters that is partially
filled with water. How fast is the water level rising at the instant the cone is
completely submerged?

Solution. Let a be the depth that the cone is submerged. We are given
that da

dt = 1. The volume of water that is displaced is given by the formula

V = 1
3πb

2a, where b satisfies the relation h
r = a

b . Thus V = 1
3π

r2a3

h2 , and we

have dV
dt = πr2a2

h2
da
dt . When the cone is completely submerged, a = h, and we

have dV
dt = πr2.

Let l denote the water level in the cylinder. Then the volume of water in
the cylinder is given by V = πR2l, and we have dV

dt = πR2 dl
dt . Plugging in the

value we found for dV
dt , and solving for dl

dt , gives us dl
dt = r2

R2 . In other words, the

water level is rising at a rate of r2

R2 cm/s at the instant the cone is completely
submerged.

Week 9. Proposed by Matthew McMullen.

You are teaching factoring of trinomials and one of your students teaches you
the following trick for factoring 6x2 + 19x+ 10.

First, write (6x+ )(6x+ ), since the leading coefficient is 6. Then, find
two numbers that multiply to be 60 (6×10) and add to be 19 (the coefficient of
the x term). Put these numbers (4 and 15) in the blanks to get (6x+4)(6x+15).
Then throw away any common factors to get (3x+ 2)(2x+ 5).

Does this trick always work? If not, when will it work?

Solution. Coming soon.
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