
Coffee Hour Problems and Solutions

Edited by Matthew McMullen

Spring 2015

Week 1. Proposed by Matthew McMullen.

Show that

arccos

(
2x

x2 + 1

)
= arctanx− arctan

1

x

if and only if x ≥ 1.

Solution. First, since −1 ≤ 2x
x2+1 ≤ 1 for all x, the left-hand side always makes

sense. If x = 0, however, the right-hand side is undefined, so the equation
cannot be true then. When x = 1, both sides equal 0; but when x = −1, the
left-hand side is π, while the right-hand side is 0. It remains to check the cases
|x| > 1 and 0 < |x| < 1.

For x 6= 0 the derivative of the right-hand side can be shown to be 2
x2+1 .

For x 6= ±1, the derivative of the left-hand side reduces to

2(x2 − 1)

(x2 + 1)|x2 − 1|
.

Thus, when |x| > 1 the derivatives of the left- and right-hand sides are equal;
but, when 0 < |x| < 1, these derivatives are not equal. Moreover, when x =

√
3,

both sides of the equation equal π/6; but when x = −
√

3, the left-hand side is
5π/6 and the right-hand side is −π/6.

Week 2. Proposed by Matthew McMullen.

Suppose a0, a1, a2, a3, and a4 are all non-negative and satisfy

4∑
n=0

an = 1,

4∑
n=0

nan = 1,

4∑
n=0

n2an = 2, and

4∑
n=0

n3an = 5.

What is the largest possible value of a0?
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Solution. The given system of four equations can be solved by using the
augmented matrix 

1 1 1 1 1 1
0 1 2 3 4 1
0 1 4 9 16 2
0 1 8 27 64 5

 .

After row reduction, we obtain the matrix
1 0 0 0 −1 1/3
0 1 0 0 4 1/2
0 0 1 0 −6 0
0 0 0 1 4 1/6

 .

Therefore, a0 = 1/3 + a4, a1 = 1/2− 4a4, a2 = 6a4, and a3 = 1/6− 4a4. Since

each ai is non-negative, 0 ≤ a4 ≤ 1/24. Thus, a0 ≤ 1/3 + 1/24 = 3/8 .

Week 3. Proposed by Matthew McMullen.

Evaluate ∫ π
3

π
6

1

1 + cot3 x
dx.

(Hint: Try the substitution u = π
2 − x.)

Solution. Let I be the integral in question. Multiplying the numerator and
denominator of the integrand by sin3 x yields

I =

∫ π
3

π
6

sin3 x

sin3 x+ cos3 x
dx.

Using the suggested substitution and the cofunction identities for sine and cosine
yields

I =

∫ π
3

π
6

cos3 u

sin3 u+ cos3 u
du.

Therefore,

2I =

∫ π
3

π
6

1 dx =
π

6
,

which means that I = π/12 . (Note that this argument works for any power of

cotangent in the original integrand.)
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Week 4. Proposed by Matthew McMullen.

Solve the system of equations

x+ 2y + 3z = 2016

4y + 5z = 2014

given that x, y, and z are integers; z > 0; and xyz is as small as possible.

Solution. Reducing the last equation modulo 4 tells us that z is two more than
a multiple of 4, say z = 2 + 4n for some nonnegative integer n. Solving for x
and y in terms of n gives us x = 1008 − 2n and y = 501 − 5n. Therefore, we
need to minimize

f(n) = (1008− 2n)(501− 5n)(2 + 4n)

for nonnegative integers n. It can be shown that the critical points of f occur
at

n =
12, 074±

√
85, 543, 036

60
≈ 47.1 and 355.4.

Since f is a cubic polynomial with positive leading coefficient, its minimum
value occurs at either n = 355 or n = 356. When n = 355 we have f(n) =
−539, 865, 144, and when n = 356 we have f(n) = −539, 860, 784. Thus n =

355, which means the solution is x = 298, y = −1274, and z = 1422 .

Week 5. Proposed by Matthew McMullen.

The game of craps involves a shooter repeatedly rolling two fair dice. The sim-
plest bet in this game is the “pass” bet. If the shooter’s first roll is a 7 or 11,
“pass” wins. If the shooter’s first roll is a 2, 3, or 12, “pass” loses. Otherwise,
whatever number is rolled first must be rolled again before a 7 is rolled in order
for “pass” to win. Wikipedia says that the chance of winning a “pass” bet is
244
495 . Prove that this is correct.

Solution. Let’s first find the probability of rolling a 4 before a 7, which is the
same as the probability of rolling a 10 before a 7. You can roll a 4 right away,
not roll a 4 or 7 and then roll a 4, not roll a 4 or 7 twice and then roll a 4, etc.
Thus,

P (4 before 7) = P (10 before 7) =
3

36

(
1 +

27

36
+

(
27

36

)2

+ · · ·

)
=

3

36
·36

9
=

1

3
.

Similarly,

P (5 before 7) = P (9 before 7) =
4

36

(
1 +

26

36
+

(
26

36

)2

+ · · ·

)
=

4

36
·36

10
=

2

5
,
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and

P (6 before 7) = P (8 before 7) =
5

36

(
1 +

25

36
+

(
25

36

)2

+ · · ·

)
=

5

36
·36

11
=

5

11
.

Now, there are seven different ways of winning. The shooter can roll a 7 or
11 on the first roll, roll a 4 then a 4 before a 7, roll a 10 then a 10 before a 7,
roll a 5 then a 5 before a 7, roll a 9 then a 9 before a 7, roll a 6 then a 6 before
a 7, or roll an 8 then an 8 before a 7. Thus, the chance of winning a “pass” bet
is

8

36
+ 2 · 3

36
· 1

3
+ 2 · 4

36
· 2

5
+ 2 · 5

36
· 5

11
=

244

495
,

as desired.

Week 6. Proposed by Matthew McMullen.

You have enough money to place one bet on “pass” in craps. Recall from last
week that the probability of winning this bet is 244

495 . The casino pays 1:1 for this
bet. You decide to keep betting on “pass” as long as you have enough money to
do so. Find the probability that you will be able to place more than nine total
bets.

Solution. Let p = 244
495 , and put q = 1 − p. Let P (x) denote the probability

that you place exactly x bets. Clearly, P (1) = q. The only way to place
exactly three bets is to win the first bet and lose the next two; so P (3) = pq2.
There are two ways to place exactly five bets: win the first two and lose the
next three; or win the first, lose the second, win the third, and lose the next
two. Thus, P (5) = 2p2q3. Similarly, there are five ways to place exactly seven
bets and fourteen ways to place exactly nine bets. Thus, P (7) = 5p3q4 and
P (9) = 14p4q5.

The probability of placing more than nine total bets is

1−
5∑

n=1

P (2n− 1) = 1− q
(
1 + pq + 2(pq)2 + 5(pq)3 + 14(pq)4

)
≈ 0.2355 .
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Week 7. Proposed by Matthew McMullen.

Suppose that a casino has a “not black” bet in roulette that pays 1:1. This
bet has a 20

38 probability of winning. You have enough money to place one bet
on “not black.” You decide to keep betting on “not black” as long as you have
enough money to do so. What is the probability that you bankrupt the casino?
In other words, what is the probability that you will never bust?

Solution (outline). Let p = 20
38 and put q = 1 − p. Let P (x) denote the

probability that you place exactly x bets. One can show that P (1 + 2n) =

Cnq
n+1pn, for n ≥ 0, where Cn =

(2n
n )

n+1 is the n-th Catalan number. The
generating function for these numbers is

∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
,

which holds for 0 < |x| ≤ 1/4.
The probability you never bust is therefore

1−
∞∑
n=0

Cnq
n+1pn = 1− q

∞∑
n=0

Cn(qp)n

= 1− q 1−
√

1− 4qp

2qp

= 1− q

p

= 1
10 .

Week 8. Proposed by Matthew McMullen.

For ten years, you put a fixed dollar amount at the end of each month into
a savings account that earns an APR of 2.5% compounded monthly (before
the monthly deposit). Let T represent the total amount you invested in this
account. If, instead, you had made a one-time deposit of T into the same savings
account, how long would it have taken you to realize the same future value?
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Solution. Let D denote your monthly deposits. Then T = 120D. We need to
solve

D[(1 + .025
12 )120 − 1]

( .02512 )
= 120D

(
1 +

.025

12

)12t

for t. Using mad algebra skills, we find

t =
ln 4 + ln[(1 + .025

12 )120 − 1]

12 ln(1 + .025
12 )

,

which is more than 5 years, but less than 5 years and 1 month. So it would

have taken 61 months to realize the same future value.

Week 9. Proposed by Matthew McMullen.

Define

a(x, y) =
2y

x+ y

(
x− 1
x−y
2

)
,

where x and y are integers, x ≥ 1, y ≥ 0, x ≥ y, and x and y have the same
parity (i.e., are either both even or both odd). Show that a(n, n) = 1 for all
positive integers n and that

a(n+ 1,m+ 1) = a(n,m) + a(n,m+ 2),

for all nonnegative integers n and m that have the same parity and satisfy
n > m.

Solution (not really). You’ll have to trust me on this one. If you expand
out both sides, you will see that they’re equal. The inspiration for this problem
came from the Catalan numbers, which is the sequence you get as x ranges
through the odd positive integers when y = 1 is fixed.

Week 10. Modified Purdue U. Problem of the Week.

Let f(x) be a strictly increasing differentiable function on a bounded interval
[a, b]. Choose c in [a, b]. Consider the two curvilinear triangles bounded by the
vertical lines x = a, x = b, the horizontal line y = f(c), and the graph of f . For
which position c is the sum of the areas of these curvilinear triangles minimal?
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Solution. Let A(c) be the sum of the areas of the curvilinear triangles described
in the question. Then

A(c) =

∫ c

a

(f(c)− f(x)) dx+

∫ b

c

(f(x)− f(c)) dx

= (c− a)f(c)−
∫ c

a

f(x) dx+

∫ b

c

f(x) dx− (b− c)f(c)

= (2c− a− b)f(c)−
∫ c

a

f(x) dx−
∫ c

b

f(x) dx.

Taking the derivative with respect to c gives us

A′(c) = (2c− a− b)f ′(c) + 2f(c)− f(c)− f(c) = (2c− a− b)f ′(c).

Now, if a ≤ c ≤ a+b
2 , then A′(c) ≤ 0, and if a+b

2 ≤ c ≤ b, then A′(c) ≥ 0

(remember that f is strictly increasing). Thus, c = a+b
2 minimizes A.

Week 11. Proposed by Matthew McMullen.

Let k be a positive integer. Find

lim
n→∞

(
1

n+ k
+

1

n+ k + 1
+ · · ·+ 1

n+ nk

)
.

Solution. Let S(n) denote the above sum. By thinking of S(n) as an upper
and lower Riemann sum, we have∫ n+nk+1

n+k

1

x
dx < S(n) <

∫ n+nk

n+k−1

1

x
dx,

or

ln

(
n+ nk + 1

n+ k

)
< S(n) < ln

(
n+ nk

n+ k − 1

)
.

By the Squeeze Theorem, limn→∞ S(n) = ln(k + 1) .
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Week 12. From 2015 AIME I.

There is a prime number p such that 16p + 1 is the cube of a positive integer.
Find p.

Solution. We are given that 16p = k3−1 for some positive integer k. This forces
k to be odd, say k = 2a+ 1 for some a ≥ 0. Then 8p = a(4a2 + 6a+ 3). Then a
is even, say a = 2b for some b ≥ 0; and we have 4p = b(16b2 + 12b+ 3). Then b
is even, say b = 2c for some c ≥ 0; and we have 2p = c(64c2 +24c+3). Then c is
even, say c = 2d for some d ≥ 0; and we have (finally!) p = d(256d2 + 48d+ 3).

Since p is prime, d = 1 and we get p = 256 + 48 + 3 = 307 .

Week 13. From 2015 AIME II.

Let m be the least positive integer divisible by 17 whose digits sum to 17. Find
m.

Solution. Suppose that m = 100a + 10b + c, where a, b, c ∈ {0, . . . , 9} and
a + b + c = 17. Then m = 99a + 9b + 17. Since m is divisible by 17, and 17
and 9 are relatively prime, 11a+ b is divisible by 17. Since 0 ≤ 11a+ b ≤ 108,
we must have 11a+ b ∈ {0, 17, 34, 51, 68, 85, 102}. The first viable option occurs

when 11a+ b = 51, whereby we see that a = 4, b = 7, and c = 6. So, m = 476 .

Week 14. Proposed by Matthew McMullen.

Let S be the set of all positive integers divisible by 17 whose digits sum to 17.
How many integers less than 10,000 are in S?

Solution (kinda). Let m < 10000 be in S. Then m = 1000a+ 100b+ 10c+ d,
where a, b, c, d ∈ {0, . . . , 9} and a+b+c+d = 17. Then m = 999a+99b+9c+17.
Since m is divisible by 17, and 17 and 9 are relatively prime, 111a+ 11b+ c is
divisible by 17. Reducing this mod 17 tells us that 9a + 11b + c is divisible by
17.

If you go through all the possible options for b, c, d when a = 0, 1, . . . , 9,
respectively, you will (trust me!) find 41 possible values for m. For two such
examples, m = 7361 = 17(433) or m = 4913 = 17(289). (Can you find a less
brute-force way to do this problem?)
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Week 15+. Proposed by Matthew McMullen.

Let S be the set of all positive integers divisible by 17 whose digits sum to 17.
Define a(n) to be the number of integers less than or equal to n that are in S.
Describe the function a(n). In particular, is it asymptotic to some “well-known”
function?

Solution (not!). In all likelihood, this is an unsolved problem. Just for fun,
the following graph of a(n) for 1 ≤ n ≤ 1, 000, 000 was generated using Mathe-
matica.

200 000 400 000 600 000 800 000 1 ´ 106

200

400

600

800

1000

1200
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