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Edited by Matthew McMullen

Fall 2014

Week 1. Proposed by Matthew McMullen.

Kaprekar’s routine is when you take a number, arrange its digits in descend-
ing and then ascending order to get two numbers, and then subtract the smaller
number from the bigger number. For example, Kaprekar’s routine performed
on the number 803 yields the number 792, since 830 − 038 = 792. For fun, we
could repeat this process on 792 to get 693, since 972−279 = 693. And then we
can repeat this process again on 693, and again on the resulting number, etc.

What happens when we repeat Kaprekar’s routine over and over again on
four-digit numbers? Try it on 2014, 2015, 2016, and 2017. Make an educated
guess about what, if anything, eventually happens. Can you prove your guess
for all four-digit numbers?

Solution. If all four digits are equal, Kaprekar’s routine obviously results in
0000. It turns out that if at least two digits are different, Kaprekar’s routine
eventually reaches the number 6174 . See http://en.wikipedia.org/wiki/

6174_(number) for more details.

Week 2. Proposed by Matthew McMullen.

It takes three days for a boat to travel from A to B downstream and four days
to come back upstream. Assuming the velocity of the current is constant, how
long will it take a wooden log to be carried from A to B by the current?

Solution. Let x be the speed of the boat in still water, in miles per day, and
let y be the speed of the current, in miles per day. Then the distance the boat
travels downstream is 3(x + y), and the distance the boat travels upstream
is 4(x − y). Equating these yields x = 7y; so the distance from A to B is
3(7y + y) = 24y. The log will be carried at a rate of y miles per day, so it will

take 24y
y = 24 days for the log to go from A to B.
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Week 3. Proposed by Matthew McMullen.

Let N be any number with two or more digits such that the digits are non-
decreasing and the tens digit is strictly less than the ones digit. Show that the
digits of 9N sum to 9. For example, if N = 22379, then 9N = 201411, and
2 + 0 + 1 + 4 + 1 + 1 = 9.

Solution. (Every number is written in base 10 notation.) Suppose N =
cncn−1 . . . c2c1. For each i, put 9ci = aibi; clearly, ai + bi = 9. Then 9N =
a1b1 + a2b20 + a3b300 + . . .. Since the digits of N are non-decreasing with the
tens digit strictly less than the ones digit, there will be a carry in all but the
ones position. Thus, the sum of the digits of 9N is given by

b1 + (a1 + b2 − 10) + (a2 + b3 + 1− 10) + (a3 + b4 + 1− 10) + · · ·
+(an−1 + bn + 1− 10) + (an + 1),

which rearranges to

(a1 + b1) + (a2 + b2) + · · ·+ (an + bn)− 9(n− 1) = 9n− 9(n− 1) = 9.

Week 4. Proposed by Matthew McMullen.

Show that there is some multiple of 2017 that consists solely of ones.

Solution. Consider the numbers 1, 11, 111, . . . , 11 · · · 11, where the last number
has 2018 digits. Since there are only 2017 possible remainders when dividing
by 2017, two of the numbers in our list must leave the same remainder upon
division by 2017. If we subtract these two numbers, we get a number of the
form 11 · · · 1100 · · · 00 that is divisible by 2017. In other words, 2017 divides a
number of the form N × 10k, for some N = 11 · · · 11 and some nonnegative k.
Since the gcd of 2017 and 10k is 1, 2017 must divide N .

Week 5. Proposed by Matthew McMullen.

Find all pairs of integers a, b such that the vectors 〈a, 2, 3〉, 〈4, b, 6〉, and 〈7, 8, 9〉
are linearly dependent over R3.

Solution. Let

M =

 a 2 3
4 b 6
7 8 9

 .
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Then we have detM = a(9b−48)−2(36−42)+3(32−7b) = 9ab−48a−21b+108,
and we want to find all integers a, b such that detM = 0. Solving for a gives us
a = 7b−36

3b−16 . If b > 6 or b < 4, then 2 < a < 3; so our only possible values for b
are 4, 5, and 6. The respective values of a are 2, 1, and 3. Thus, there are three

(a, b) pairs: (1, 5), (2, 4), and (3, 6) .

Week 6. Problem A1 from the 1998 Putnam Exam.

A right circular cone has base of radius 1 and height 3. A cube is inscribed in
the cone so that one face of the cube is contained in the base of the cone. What
is the side-length of the cube?

Solution. Let s be the side-length of the cube. If you slice the original cone
parallel to the base at the top of the cube, you get a smaller cone of diameter
s
√

2 (the length of the diagonal of each face of the cube) and height 3− s. The

2 to 3 ratio of the base diameter to the height is preserved, so we have 2
3 = s

√
2

3−s ,

or s = 6
3
√
2+2

.

Week 7. Problem A1 from the 1996 Putnam Exam.

Find the least number A such that for any two squares of combined area 1,
a rectangle of area A exists such that the two squares can be packed in the
rectangle (without the interiors of the squares overlapping). You may assume
the sides of the square will be parallel to the sides of the rectangle.

Solution (curtesy of student Jeffrey Guillott). Suppose you have two squares,
one of area x and the other of area y, where x + y = 1; and, without loss of
generality, x ≥ y. The most efficient way to pack these squares into a rectangle
is to place them side by side with their bases lined up. This rectangle will have
area

√
x(
√
x+
√
y), or x+

√
x
√

1− x.
Therefore, we need to maximize the function

f(x) = x+
√
x− x2

on the interval [1/2, 1]. Setting the derivative to zero and solving for x yields

the only critical point, x0 = 2+
√
2

4 . Then A is the maximum of f(1/2) = 1,

f(1) = 1, and f(x0) = 1+
√
2

2 . Thus, A = 1+
√
2

2 .
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Week 8. Modified from a Purdue University Problem of the Week.

A cube is inscribed in the unit sphere x2 + y2 + z2 = 1. Let A, B, C, and
D denote the vertices of one face of the cube. Let O denote the center of the
sphere, and let P denote a point on the sphere. Find

cos2(POA) + cos2(POB) + cos2(POC) + cos2(POD).

Solution. Without loss of generality, let’s choose the “front” face of the cube,
those points with positive x-coordinate. Then one possible ordering gives A =
(1/
√

3, 1/
√

3, 1/
√

3), B = (1/
√

3,−1/
√

3, 1/
√

3), C = (1/
√

3,−1/
√

3,−1/
√

3),
and D = (1/

√
3, 1/
√

3,−1/
√

3).
Suppose P = (x, y, z). Using either the Law of Cosines, or the dot product

(which amounts to the same thing), one can show that

cos(POA) =
x+ y + z√

3
,

cos(POB) =
x− y + z√

3
,

cos(POC) =
x− y − z√

3
, and

cos(POD) =
x+ y − z√

3
.

Then, after multiplying out (using the fact that x2 + y2 + z2 = 1) we see that

cos2(POA) + cos2(POB) + cos2(POC) + cos2(POD) =
4

3
.

Week 9. Proposed by Matthew McMullen.

Find a > 0 such that ∫ ∞
0

1

x1−a + x1+a
dx = 2014.
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Solution. Multiplying top and bottom by xa−1 and then using the substitution
u = xa gives us ∫ ∞

0

1

x1−a + x1+a
dx =

∫ ∞
0

xa−1

1 + x2a
dx

=
1

a

∫ ∞
0

1

1 + u2
du

=
1

a
tan−1 u

∣∣∣∣u→∞
u=0

=
π

2a
.

Solving π
2a = 2014 gives us a = π

4028 .

Week 10. Proposed by Matthew McMullen.

Let ε > 0. Find sequences an and bn such that
∑∞
n=1 an converges,∑∞

n=1 bn diverges, and there exists some positive integer n0 with
1

n1+ε < an, bn <
1
n , for all n ≥ n0.

Solution. Let an = 1
n1+ε/2 and bn = 1

(n+1) ln(n+1) . Then
∑∞
n=1 an converges

and
∑∞
n=1 bn diverges (both by, say, the Integral Test). Since 1+ε > 1+ε/2 > 1,

1
n1+ε < an <

1
n , for all n ≥ 1. Also, since

lim
n→∞

(
1 +

1

n

)
ln(n+ 1) =∞ and lim

n→∞

(1 + 1/n) ln(n+ 1)

nε
= 0,

(n+ 1) ln(n+ 1) is eventually greater than n and less than n1+ε; in other words,
there exists some positive integer n0 with 1

n1+ε < bn <
1
n , for all n ≥ n0.

Week 11. From our calculus textbook.

Find the value of a for which the limit

lim
x→0

sin(ax)− sinx− x
x3

is finite, and evaluate the limit.

Solution. If a = 2, we can apply L’Hospital’s Rule three times and see that
the limit is − 7

6 . Alternatively, we can use Taylor polynomials to see that
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sin(ax)− sinx− x
x3

=
a− 2

x2
+

1− a3

6
+ f(x),

where f(x)→ 0 as x→ 0. Thus, a = 2 and the limit is − 7
6 .

Week 12. Proposed by Matthew McMullen.

It can be shown that

∞∑
n=1

1

n2 − x2
=

1− πx cot(πx)

2x2

for all non-integers x. Use this identity to find

(a)

∞∑
n=1

1

4n2 − 1

(b)

∞∑
n=1

1

9n2 − 1

(c)

∞∑
n=1

1

16n2 − 1

(d)

∞∑
n=1

1

n2
. (The above identity also holds as x→ 0.)

Solution. For (a)–(c), notice that

∞∑
n=1

1

k2n2 − 1
=

1

k2

∞∑
n=1

1

n2 − (1/k)2
=

1− π
k cot πk
2

.

Using this identity, we see that the answer to (a) is 1
2 , the answer to (b) is

9−π
√
3

18 , and the answer to (c) is 4−π
8 .

For (d), one can use L’Hospital’s Rule, or Taylor series, to show that

lim
x→0

1− πx cot(πx)

2x2
=
π2

6
.

6



Week 13. Proposed by Matthew McMullen.

Show that the surface area of the part of a sphere trapped between two parallel
planes depends only on the distance between the planes.

Solution. Without loss of generality, suppose that the sphere is generated by
rotating the top half of the circle x2 +y2 = r2 about the x-axis and that the two
planes are x = a and x = b, where −r ≤ a < b ≤ r. By implicit differentiation,
2x+ 2yy′ = 0, or yy′ = −x. Then the surface area we want is given by∫ b

a

2πy
√

1 + (y′)2 dx = 2π

∫ b

a

√
y2 + (yy′)2 dx

= 2π

∫ b

a

√
y2 + x2 dx

= 2π

∫ b

a

r dx

= 2πr(b− a).

Week 14. Proposed by Matthew McMullen.

Find all real numbers x such that

x =

∞∑
n=1

n(n+ 1)

xn
.

Solution. By the root test, the right-hand side of the given equation only
makes sense if |x| > 1. Let u = 1/x. Then we need to solve

1

u2
=

∞∑
n=1

n(n+ 1)un−1,

for |u| < 1.
For |u| < 1,

∞∑
n=1

un+1 =
u2

1− u
,

since this is a convergent geometric series. Taking the second derivative of both
sides with respect to u gives us

∞∑
n=1

n(n+ 1)un−1 =
2

(1− u)3
.
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We therefore need to solve

1

u2
=

2

(1− u)3
,

or

x2 =
2

(1− 1/x)3
.

Multiplying the last equation out shows us that x is the (unique) real solution
to the equation x3 − 3x2 + x− 1 = 0, or x ≈ 2.76929.
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