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Week 1. Proposed by Matthew McMullen.

A regular hexagon with area 3 is inscribed in a circle. Find the area of a regular
hexagon circumscribed about the same circle.

Solution. Let r denote the radius of the circle. The inscribed hexagon is
comprised of six equilateral triangles with side length r, while the circumscribed
hexagon is comprised of six equilateral triangles with height r. Thus, the area
of the inscribed hexagon is 6 · r/2 ·

√
3r/2, and the area of the circumscribed

hexagon is 6 ·
√

3r/3 · r. Using the fact that the inscribed hexagon has area 3,
we get 12 = 6r2

√
3. Thus, the area of the circumscribed hexagon is 6r2

√
3/3 =

12/3 = 4 .

Week 2. Proposed by Matthew McMullen.

A regular n-gon with area A is inscribed in a circle. Find the area of a regular
n-gon circumscribed about the same circle (as a function of A and n).

Solution. Let r denote the radius of the circle. Similar to the above solution,
we divide each n-gon into n congruent isosceles triangles and use trig to find
the side lengths. We find that the area of the inscribed polygon is

n · r sin(π/n) · r cos(π/n),

while the area of the circumscribed polygon is

n · r tan(π/n) · r.

Thus, in terms of A and n, the area we seek is given by A sec2(π/n) .
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Week 3. Proposed by Matthew McMullen.

Can you find two real numbers, a and b, such that a > 0 and∫ 1

0

(ax+ b) dx =

∫ 1

0

(ax+ b)2 dx =

∫ 1

0

(ax+ b)3 dx ?

Solution. Yes! Integrating the above equations gives

a

2
+ b =

a2

3
+ ab+ b2 =

a3

4
+ a2b+

3ab2

2
+ b3.

Setting the first part equal to the last part, and factoring, yields

(2b+ a)(2b2 + 2ab+ a2 − 2) = 0.

If 2b + a = 0, then we get a = b = 0. Thus, we need to solve the system of
quadratic equations

2b2 + 2ab+ a2 − 2 = 0 and 6b2 + (6a− 6)b+ 2a2 − 3a = 0.

We’ll leave off the (gory) details and just say that the only solution with a > 0

is a =
√

3 and b = (1−
√

3)/2 .

Week 4. Proposed by Matthew McMullen.

Show that

lim
n→∞

((
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
− lnn

)
exists and is between 0.5 and 0.6.

Solution. Let Hn =
∑n

k=1
1
k . We will show that the sequence (Hn − lnn)

is decreasing and bounded below by 0.5. Showing this sequence is decreasing
is equivalent to showing that ln(n + 1) − lnn > 1

n+1 , for all n. Put f(x) =

ln(x + 1) − lnx − 1/(x + 1). Then f ′(x) = −1/((x(x + 1)2) < 0, for all x > 0.
Therefore, for all x > 0, f(x) > limu→∞ f(u) = 0. In particular, we have shown
that ln(n+ 1)− lnn > 1

n+1 , for all positive integers n.
To show that our sequence is bounded below by 0.5, we use the Trapezoid

Rule to estimate
∫ n

1
(1/x) dx. Since the function y = 1/x is convex on (0,∞),

this will be an overestimate of the integral. Thus,

1

2

(
1 +

1

2

)
+

1

2

(
1

2
+

1

3

)
+ · · ·+ 1

2

(
1

n− 1
+

1

n

)
>

∫ n

1

1

x
dx = lnn.
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In other words, for all n > 1,

Hn − lnn >
1

2
+

1

2n
>

1

2
.

Since (Hn − lnn) is decreasing and bounded below by 0.5, we have shown
that the limit in question exists and is at least 0.5. To show that the limit does
not exceed 0.6, simply note that H22 − ln 22 = 0.59977 . . . < 0.6.

Week 5. Proposed by Ryan Berndt and Matthew McMullen.

Let sn =
∑n

k=1
1
k . Does

∞∑
n=1

1

n · sn

converge? What about
∞∑

n=1

1

n · s2n
?

Solution. Using last week’s problem and the limit comparison test, we see that
the first sum is equiconvergent to the series

∞∑
n=2

1

n lnn
,

which diverges by the integral test. Similarly, the second sum is equiconvergent
to the series

∞∑
n=2

1

n(lnn)2
,

which converges by the integral test.
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Week 6. Proposed by Zengxiang Tong.

In the following diagram, BD = CD and quadrilaterals ABEF and ACGH are
squares. Prove AD = 1

2 FH.

Solution 1. Locate the figure in the plane; where, without loss of generality,
B = (0, 0), D = (1, 0), and A = (x, y), for some x, y with y > 0. Then it can be
shown that F = (x− y, x+ y) and H = (x+ y, y − x+ 2). Then

FH
2

= (2y)2 + (2x− 2)2 = 4(y2 + (x− 1)2) = 4AD
2
.

Thus, AD = 1
2 FH.

Solution 2. (By Stephen Sheneman, Computer Science major.) Add the point
X to the figure so that ACXB is a parallelogram. We are given that AC = AH
and CX = AB = AF . Notice that ∠ACX+∠CAB = 180◦ = ∠FAH+∠CAB,
so ∠ACX = ∠FAH. Thus, by SAS, triangles ACX and HAF are congruent;
in particular, AX = FH. Since the diagonals of a parallelogram bisect each
other, D is on AX and AD = 1

2 AX = 1
2 FH.

Week 7. Proposed by Matthew McMullen.

For any prime p > 3, prove that 13 divides 102p − 10p + 1. Can you classify all
nonnegative integers n such that 13 divides 102n − 10n + 1?

Solution. In our solution, all of the congruences will be modulo 13. First, since
1001 = 13 · 77, 103 ≡ −1. Next, since x3 + 1 = (x+ 1)(x2−x+ 1), we have that

103n + 1 = (10n + 1)(102n − 10n + 1), (1)

for all nonnegative integers n. If n is even, (1) implies

2 ≡ (10n + 1)(102n − 10n + 1);
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thus, since 13 is prime, we cannot have 102n − 10n + 1 ≡ 0.
Now suppose n = 6k + 1, for some nonnegative integer k. Then (1) implies

0 ≡ 11(102n − 10n + 1),

and it follows that 13 divides 102n − 10n + 1. Similarly, if n = 6k − 1, for some
positive integer k, (1) implies

0 ≡ 5(102n − 10n + 1),

and again 13 divides 102n − 10n + 1. Finally, suppose n = 6k + 3, for some
nonnegative integer k. Then

102n − 10n + 1 = (106)2k+1 − (106)k · 103 + 1 ≡ 3.

In summary, 13 divides 102n − 10n + 1 if and only if n is either one more or
one less than a multiple of 6 (notice that this includes all primes greater than
3).

Week 8. Proposed by Zengxiang Tong.

In the following diagram, ∠BAC = 2∠ABC and CD bisects ∠ACB. Show that
BC = CA+AD.

Solution 1. Extend CA past A to the point X such that AX = AD. Notice
that ∠DAX = π−∠BAC = π− 2∠ABC. Since 4AXD is isosceles, ∠AXD =
(π − ∠DAX)/2 = ∠ABC. Also, we are given that ∠ACD = ∠BCD. Thus,
by AAS, 4BCD ∼= 4XCD. In particular, BC = XC = CA+AX = CA+AD.

Solution 2. Let α denote ∠ABC, and let β denote ∠ACD = ∠BCD. Without
loss of generality, suppose CA = 1. By the Law of Sines applied to 4ABC,

1

sinα
=

BC

sin 2α
=

BC

2 sinα cosα
.

Thus, BC = 2 cosα; and we need to show that AD = 2 cosα− 1.
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By the Law of Sines applied to 4CAD,

AD

sinβ
=

1

sin(π − (2α+ β))
. (2)

We next note that 3α+ 2β = π, or β = (π − 3α)/2. Thus, (2) yields

AD =
sin(π/2− 3α/2)

sin(π/2− α/2)

=
cos(3α/2)

cos(α/2)

=
cos(α+ α/2)

cos(α/2)

= cosα− sinα
sin(α/2)

cos(α/2)

= cosα− 2 sin2(α/2)

= cosα+ (1− 2 sin2(α/2))− 1

= 2 cosα− 1.

Week 9. Proposed by Matthew McMullen.

State and prove the general result illustrated by the fact that 42 = 16, 342 =
1156, 3342 = 111556, and 33342 = 11115556. Can you find similar results in
bases other than 10?

Solution. Let n ≥ 0. The general result can be represented by

(3 . . . 3︸ ︷︷ ︸
n

4)2 = 1 . . . 1︸ ︷︷ ︸
n+1

5 . . . 5︸ ︷︷ ︸
n

6.

In summation notation, this can be written as(
1 +

n∑
k=0

3 · 10k

)2

= 1 +

n∑
k=0

5 · 10k +

n∑
k=0

10k+n+1.

Put u =
∑n

k=0 10k. Then we need to show that (1 + 3u)2 = 1 + 5u + 10n+1u.
This equation has two solutions: u = 0 and u = (10n+1 − 1)/9, so we’re done.

To generalize to base b, we work backwards and let u =
∑n

k=0 b
k. Then

u = (bn+1 − 1)/(b− 1); or,

1 + (b− 1)u2 = bn+1u− u+ 1. (3)
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To complete the square on the left-hand side, we must have b = a2 +1, for some
a. Then (3) is equivalent to

(1 + au)2 = 1 + (2a− 1)u+ bn+1u.

In other words, for any a > 1 and any n ≥ 0,

(a . . . a︸ ︷︷ ︸
n

(a+ 1))2 = 1 . . . 1︸ ︷︷ ︸
n+1

(2a− 1) . . . (2a− 1)︸ ︷︷ ︸
n

(2a),

in base a2 + 1.

Week 10. Proposed by Matthew McMullen.

Show that arccos 1
5 = 2 arctan

√
2
3 .

Solution. Put u = arctan
√

2
3 (so 0 < u < π/2). Then tanu =

√
2
3 , and

solving the associated right triangle tells us that cosu =
√

3
5 . Thus,

cos(2u) = 2 cos2 u− 1 = 2 · 3

5
− 1 =

1

5
.

Since 0 < 2u < π, arccos(cos(2u)) = 2u; in other words, arccos 1
5 = 2u =

2 arctan
√

2
3 .

Week 11. Proposed by Matthew McMullen.

(a) What is the expected number of times you must roll a fair die to get two
consecutive sixes?

(b) Your friend bets you that it will take at least 30 rolls for you to get two
consecutive sixes. Should you take this bet?

Solution. (a) Let p(n) be the probability that it takes n rolls to get two
consecutive sixes. Then p(1) = 0 and p(2) = 1/36. Suppose n > 2. If our first
roll is not a six, then we have n − 1 rolls to get two consecutive sixes. If our
first roll is a six, then our next roll cannot be a six (since n > 2), and we have
n− 2 rolls to get two consecutive sixes. Thus, for n > 2,

p(n) =
5

6
· p(n− 1) +

5

36
· p(n− 2). (4)
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We need to find the expected value of n. First, since p(n) is a probability
distribution,

∑∞
n=2 p(n) = 1. Let x =

∑∞
n=2 n · p(n). Then, using (4), we have

x = 2 · p(2) +
5

6

∞∑
n=3

n · p(n− 1) +
5

36

∞∑
n=3

n · p(n− 2)

=
2

36
+

5

6

∞∑
n=2

(n+ 1) · p(n) +
5

36

∞∑
n=1

(n+ 2) · p(n)

=
2

36
+

5

6
(x+ 1) +

5

36
(x+ 2).

Solving for x gives an expected value of 42 rolls.1

For (b), we use Mathematica to compute Pr(n ≥ 30) = 1 − Pr(n ≤ 29) =

1 −
∑29

n=2 p(n) = 0.500387. So we are slightly more likely than not to require
30 or more rolls. You should not take your friend’s bet!

Week 12. Proposed by Matthew McMullen.

Let x ≥ 0. Show that

(1 + x)(1 + x2) · · · (1 + x23) ≥ (1 + x12)23.

Solution. By canceling 1 + x12 from both sides and rearranging factors, what
we are trying to show is equivalent to

(1 + x)(1 + x23) · (1 + x2)(1 + x22) · · · (1 + x11)(1 + x13) ≥ (1 + x12)22.

To prove this, we will show that

(1 + xn)(1 + x24−n) ≥ (1 + x12)2, (5)

for all n = 1, 2, . . . , 11. After multiplying out, rearranging, and factoring, (5) is
equivalent to the statement

xn(x12−n − 1)2 ≥ 0,

which is clearly true.2

1Similarly, one can show that the standard deviation of this probability distribution is
5
√
66 ≈ 40.62.
2Moreover, we have shown that equality is attained if and only if x = 0 or x = 1.
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Week 13. From The College Mathematics Journal.

Show that

sin−1
(

x+ 3√
12 + 4x2

)
− sin−1

(
x− 3√

12 + 4x2

)
is constant for −1 ≤ x ≤ 1.

Solution 1. Put

f(x) = sin−1
(

x+ 3√
12 + 4x2

)
− sin−1

(
x− 3√

12 + 4x2

)
.

Then one can show, after a bit of work, that

f ′(x) =

√
3

x2 + 1

(
1− x
|1− x|

− 1 + x

|1 + x|

)
.

Thus, f ′(x) = 0 for −1 < x < 1. Since f is continuous, this means that f is
constant on [−1, 1].

Solution 2. Put

u = sin−1
(

x+ 3√
12 + 4x2

)
and v = sin−1

(
x− 3√

12 + 4x2

)
.

Then sinu = x+3√
12+4x2

, sin v = x−3√
12+4x2

, cosu =
√
3|1−x|√
12+4x2

, and cos v =
√
3|1+x|√
12+4x2

.

Thus, for −1 ≤ x ≤ 1, we obtain, after a bit of work,

sin(u− v) = sinu cos v − cosu sin v =

√
3

2
.

Since u−v is continuous, we either have u−v ≡ π/3 or u−v ≡ 2π/3 on [−1, 1].3

3Plugging in x = 0 shows us that u− v ≡ 2π/3 on [−1, 1].

9



Week 14. Proposed by Zengxiang Tong.

In the following diagram, circles O and P are tangent, AB is tangent to both
circles, BC is a diameter of circle O, and CD is tangent to circle P . Show that
BC = CD.

Solution. In the diagram below, E is the point of tangency of circles O and
P , and EF is tangent to both circles.

Since BC is a diameter, ∠BEC = 90◦. Since AB is tangent to circle O,
∠ABC = 90◦. Since FA and FE are tangent to the same circle, FA = FE;
hence, ∠FAE = ∠FEA. Similarly, FB = FE, and so ∠FBE = ∠FEB. We
have 180◦ = 2∠FEB + 2∠FEA. Thus, ∠AEB = 90◦ and points C, E, and A
are collinear.

Now, since triangle ABC is similar to triangle BEC and triangle ADC is

similar to triangle DEC, BC
2

= CA · CE = CD
2
, and we are done!
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Week 15. Purdue University Problem of the Week.

What is the maximum value of a and the minimum value of b for which(
1 +

1

n

)n+a

≤ e ≤
(

1 +
1

n

)n+b

for every positive integer n?

Solution. The given inequality is equivalent to

a ≤ 1

ln(1 + 1/n)
− n ≤ b.

Put f(x) = 1/ ln(1 + 1/x) − x. We have two claims: limx→∞ f(x) = 1/2 and
f is increasing on (0,∞). Since f is continuous for x > 0, proving these claims

will show that the maximum value of a is f(1) = 1/ ln 2− 1 and the minimum

value of b is 1/2 .

For the first claim we have (using little-o notation)

lim
x→∞

f(x) = lim
x→∞

1− x ln(1 + 1/x)

ln(1 + 1/x)

= lim
x→∞

1− x(1/x− 1/(2x2) + o(1/x2))

1/x+ o(1/x)

= lim
x→∞

1/(2x) + o(1/x)

1/x+ o(1/x)

=
1

2
.

For the second claim, we will show that f ′ > 0 on (0,∞). After some
manipulation (most notably taking square roots and making the substitution√

1 + 1/x 7→ x), this is equivalent to showing that 2 lnx < x − 1/x on (1,∞).
Put g(x) = x− 1/x− 2 lnx. Then g′(x) = 1 + 1/x2 − 2/x = (1− 1/x)2 > 0 on
(1,∞). Thus, for all x > 1, g(x) > g(1) = 0; and therefore f ′ > 0 on (0,∞).
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