Coffee Hour Problems of the Week Edited by Matthew McMullen

Otterbein University

Spring 2013

Week 1. Proposed by Matthew McMullen.

Suppose $a_n > 0$ for all positive integers n and $\lim_{n\to\infty} a_n = 0$. Does it necessarily follow that $\sum_{n=1}^{\infty} (-1)^n a_n$ converges? Why or why not?

Week 2. Proposed by Matthew McMullen.

Find

$$\lim_{x \to \infty} \left(x - \sqrt[2013]{x^{2013} + x^{2012}} \right).$$

Week 3. Inspired by a Purdue U. Problem of the Week.

(a) For integers a, b, and c, show that $a^2 + b^2 + c^2$ cannot be one less than a multiple of 8.

(b) Show that the equation $x^2 + y^2 + z^2 = 7w^2$ has no nontrivial solution over the integers.

Week 4. Proposed by Matthew McMullen.

Given that the periodic continued fraction

$$\frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{\dots}}}}}}}$$

converges, find its value.

Week 5. Proposed by Matthew McMullen.

Consider two groups of students: Class 1 and Class 2. Let W_1 be the percentage of women in Class 1 who got an A, W_2 the percentage of women in Class 2 who got an A, M_1 the percentage of men in Class 1 who got an A, and M_2 the percentage of men in Class 2 who got an A. Moreover, let W be the overall percentage of women who got an A, M the overall percentage of men who got an A, C_1 the percentage of Class 1 who got an A, and C_2 the percentage of Class 2 who got an A.

(a) Give an example where $M_1 > W_1$ and $M_2 > W_2$, but M < W.

(b) Can you find an example where the condition in (a) is met and a similar condition is exhibited between classes (e.g. $M_1 > M_2$ and $W_1 > W_2$, but $C_1 < C_2$)?

Week 6. Proposed by Matthew McMullen and Ryan Berndt.

Describe a tiling of the plane with countably many squares such that the sum of the cubes of the side-lengths of all the squares is finite.

Week 7. Proposed by Matthew McMullen.

Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{2^{201\sqrt[3]{n}}} \text{ and } \sum_{n=1}^{\infty} \left(\frac{1}{2} - \frac{1}{2^{\frac{n}{\sqrt{n}}}}\right).$$

Week 8. From David Burton's Elementary Number Theory.

Find the smallest positive value of n for which

(a) The equation 301x + 77y = 2000 + n has a solution over the integers.

(b) The equation 5x + 7y = n has exactly three positive solutions over the integers.

Week 9. Problem 9 on the 2013 AIME I.

A paper equilateral triangle ABC has side length 12. The paper triangle is folded so that vertex A touches a point on side \overline{BC} a distance 9 from point B. Find the length of the line segment along which the triangle is folded.

Week 10. Proposed by Matthew McMullen.

Let λ be a real number, and, for nonnegative integers k, define

$$p(k) = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}.$$

Find $\sum_{k=0}^{\infty} p(k)$, $\sum_{k=0}^{\infty} k p(k)$, and $\sum_{k=0}^{\infty} k^2 p(k)$.

Week 11. Proposed by Matthew McMullen.

Suppose that the functions f and g are differentiable on the real line and that f'(x) > g'(x) > 0, for all x. Does it necessarily follow that f is eventually greater than g? In other words, does there exist some M such that f(x) > g(x), for all x > M?

Week 12. Proposed by Matthew McMullen.

For positive integers n, define $a_n = \sum_{k=1}^n \sin(k)$. Is (a_n) a bounded sequence?

Week 13. Problem 13 on the 2013 AIME II.

In $\triangle ABC$, AC = BC, and point D is on \overline{BC} so that $CD = 3 \cdot BD$. Let E be the midpoint of \overline{AD} . Given that $CE = \sqrt{7}$ and BE = 3, find the area of $\triangle ABC$.

Week 14. Proposed by Matthew McMullen.

A chicken egg with height 6 centimeters is modeled by revolving the curve

$$\frac{x^2}{9} + \frac{y^2}{4}e^{-0.2x} = 1$$

about the x-axis. Find the volume of this egg and its maximum circumference (perpendicular to the x-axis).

Week 15. Proposed by Matthew McMullen.

A spheroid is generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{4y^2}{a^2} = 1$ about the x-axis. Suppose the volume of the spheroid is V units cubed and the surface area of the spheroid is S units squared. If V = S, find a.