
Coffee Hour Problems of the Week (solutions)
Edited by Matthew McMullen

Otterbein University

Spring 2011

Week 1. Proposed by Matthew McMullen.

Let S be the set of all degree three monic polynomials with integer coefficients
whose roots (both real and complex) all have modulus 2011. Find the number
of elements in S.

Solution. Let f ∈ S. If f has only real roots, then there are exactly four
possibilities for f : (x − 2011)3, (x + 2011)3, (x − 2011)(x + 2011)2, and (x +
2011)(x−2011)2. Suppose f has a non-real root, say a+bi. Then, since non-real
roots come in conjugate pairs, a− bi is also a root. Notice that

(x− (a+ bi))(x− (a− bi)) = x2 − 2ax+ a2 + b2 = x2 − 2ax+ 2011;

therefore, 2a must be an integer. The only possibilities for a are thus

0,±1
2
,±2

2
,±3

2
, . . . ,±4021

2
.

Each of these 8043 choices for a gives two different possibilities for f , namely
(x± 2011)(x2− 2ax+ 2011). Therefore, S has 2(8043) + 4 = 16,090 elements.

Week 2. Proposed by Matthew McMullen.

A collection of distinct concentric circles is said to be in integer standard posi-
tion if they have integer radii and their common center has integer coordinates.
Is it possible to find a rectangle with integer length and width and four distinct
concentric circles in integer standard position such that each vertex of the rect-
angle is on a different circle? If not, prove it; if so, find an explicit example.

Solution. It is possible to have the desired setup. The key is to find two
distinct Pythagorean triples (not necessarily primitive) that share a leg; for
example, (9, 12, 15) and (5, 12, 13). One (of infinitely many) explicit example
is given by the circles centered at (0, 9) with radii 5, 9, 13, and 15 and the
rectangle with vertices (0, 4), (0, 0), (12, 4), and (12, 0).
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Week 3. Ancient result proposed by Matthew McMullen.

Let f(x) be a parabola and l a line that intersects f in two distinct places, say
P1 and P2. Let T be the triangle whose vertices are P1, P2, and the point on f
whose x-coordinate is the average of the x-coordinates of P1 and P2. Archimedes
(and many others throughout history) proved that the area bounded by f and
l is four thirds the area bounded by T . Can you prove this?

Solution. My proof is extremely inelegant and uses calculus; Archimedes’
solution (see the Quadrature of the Parabola) is much better.

Without loss of generality, let f(x) = ax2, where a > 0, and let y = mx+ b
be the equation for l, where m2 + 4ab > 0 (to ensure that there are two distinct
intersection points). Let x1 and x2 denote the x-coordinates of P1 and P2, where
x1 < x2. Then the area bounded by f and l is given by∫ x2

x1

(mx+ b− ax2) dx.

Using the fact that ax2
i −mxi − b = 0 for i = 1, 2, and with our ultimate result

in mind, we see that this integral is equal to

4
3
· 1

2
(x2 − x1)

√
1 +m2 ·

m2

4a + b
√

1 +m2
. (1)

To find the area bounded by T , notice that the distance between P1 and P2

is (x2 − x1)
√

1 +m2. Therefore, to prove Archimedes’ result, it is sufficient to
show that the height of T is equal to the last factor of (1). This height is the
distance from the point

(
(x1 + x2)/2, a(x1 + x2)2/4

)
to the line l, which can be

shown to be equal to the required factor.

Week 4. Proposed by Matthew McMullen.

For n a positive integer, let D(n) be the smallest positive integer with exactly
n (positive) divisors.

(a) Find D(n) for n = 1, 2, . . . , 10.

(b) Find D(2011) and D(2010).

(c) Can you find a general formula for D(n)?
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Solution. By counting the number of divisors for the numbers 1 through 64,
we see that the first ten values of D(n) (in order) are 1, 2, 4, 6, 16, 12, 64, 24,
36, and 48. Since 2011 is prime, the only numbers with exactly 2011 divisors
are of the form p2010, where p is prime. Therefore, D(2011) = 22010 .

While a general formula for D(n) is unknown, there is an algorithm to find
it. We will use the fact that if N = qa1

1 qa2
2 · · · q

ak

k is the prime factorization of N ,
then N has exactly (a1+1)(a2+1) · · · (ak +1) divisors. To find D(n), we have to
find the smallestN = qa1

1 qa2
2 · · · q

ak

k with (a1+1)(a2+1) · · · (ak+1) = n. First list
all of the ways to write n as a product of non-increasing positive integers. Then,
for each product in our list, we consider the number N = pb1−1

1 pb2−1
2 · · · pbk−1

k ,
where pi denotes the ith prime and bi denotes the ith factor in the product
under consideration. The smallest such N is D(n).

For n = 2010, we have 15 ways to write n as a product of non-increasing
positive integers. For example, the products 67·30 and 201·5·2 give N = 266 ·329

and N = 2200 · 34 · 5, respectively. Comparing all 15 possible N ’s, we see that
D(2010) = 266 · 34 · 52 · 7 .

Week 5. Proposed by Matthew McMullen.

For n a positive integer, let

f(n) =
∫ 1

0

1
x1/n + x1/(n+1)

dx.

(a) Show that f(n) exists for all n.

(b) Find f(1) and f(2).

(c) Can you find a general formula for f(n)?

Solution. f(n) exists, since, for all positive integers n,

f(n) <
∫ 1

0

1√
x
dx = 2.

Using the substitution u2 = x gives

f(1) = 2
∫ 1

0

1
u+ 1

du = 2 ln 2 ,

and using the substitution u6 = x gives

f(2) = 6
∫ 1

0

u3

u+ 1
du = 6

∫ 1

0

(
u2 − u+ 1− 1

u+ 1

)
du = 5− 6 ln 2 .
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In general, using the substitution un(n+1) = x, we get

f(n) = n(n+ 1)
∫ 1

0

un2−1

u+ 1
du

= n(n+ 1)
∫ 1

0

(
un2−2 − un2−3 + · · · ± 1∓ 1

u+ 1

)
du

= n(n+ 1)
(

1
n2 − 1

− 1
n2 − 2

+ · · · ± 1∓ ln 2
)
,

where we use the top signs if n is even and the bottom signs if n is odd. This
can be written more concisely as

f(n) = (−1)n+1 n(n+ 1)

ln 2−
n2−1∑

k=bn2+1
2 c

1
k

 .

Week 6. Proposed by Ryan Berndt.

Let a ≥ b ≥ 0. Show that

a1/n − b1/n ≤ (a− b)1/n,

for all positive integers n.

Solution. Let n be a positive integer. Put u = a1/n and v = b1/n. What we
want to show is equivalent to showing that

(u− v)n ≤ un − vn.

Since a ≥ b, we have that u ≥ v. Thus, u = v + t, for some t ≥ 0. Therefore,
we need to show that

tn ≤ (v + t)n − vn.

By the binomial theorem, the right-hand side of this inequality is

tn +
n−1∑
k=1

(
n

k

)
vn−ktk ≥ tn,

with equality if and only if either n = 1 or v = 0 (in which case b = 0) or t = 0
(in which case a = b).
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Week 7. Proposed by Matthew McMullen.

Let C be the circle with radius 1 centered at (0, 1). Let C∗ be C minus the
point (0, 2).

(a) Show that the mapping

(a, b) 7→ 2a
2− b

gives a one-to-one correspondence between C∗ and the set of all real numbers.

(b) Can you describe an explicit one-to-one correspondence between C and the
set of all real numbers?

Solution. To show that the map is 1-1, suppose (a1, b1) and (a2, b2) are in C∗

(so a2
i = bi(2− bi) and bi 6= 2 for i = 1, 2) and

2a1

2− b1
=

2a2

2− b2
.

Squaring both sides and simplifying gives

b1(2− b2) = b2(2− b1).

Thus, b1 = b2; and hence, a1 = a2.
To show that the map is onto, let x be a real number and put a = 4x/(x2+4)

and b = 2x2/(x2 + 4). Then b 6= 2 and

b(2− b) =
2x2

x2 + 4
· 8
x2 + 4

=
16x2

(x2 + 4)2
= a2;

so (a, b) is in C∗. Also,
2a

2− b
=

8x
x2+4

8
x2+4

= x.

Any 1-1 correspondence between all of C and the real line will be, in some
sense, ugly. One idea is to cobble together several bijections. You can map
C to [0, 2π) by shifting C down 1 and using polar coordinates. You can map
the open interval (0, 2π) to C∗ by using polar coordinates, rotating 90 degrees
counterclockwise, and shifting up 1. The main problem, then, is to describe a
bijection between [0, 2π) and (0, 2π).

One way to do this is to let {q1, q2, . . . } be an enumeration of the rationals in
(0, 2π). Then define your map by x 7→ x, for x irrational, 0 7→ q1, and qi 7→ qi+1,
for i = 1, 2, . . . .
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Week 8. Suggested by Molly Clairemont (from mathschallenge.net).

Let b be a positive integer. Prove that the Diophantine equation

(x2 + (b− x)y)2 = 1

has at least four solutions over the positive integers.

Solution. We can rewrite the equation as the two equations

(x− b)y = x2 ± 1.

For b = 1, we clearly have infinitely many solutions: (t, t + 1), for all positive
integers t. If we make the substitution u = x − b and solve for y, we see that
either

y = u+ 2b+
b2 + 1
u

or y = u+ 2b+
b2 − 1
u

.

Thus, y is a positive integer for u ∈ {1, b2 + 1, b+ 1, b−1, b2−1}. If b > 2, these
choices for u actually give us six distinct solutions:

(b+ 1, b2 + 2b+ 2), (b2 + b+ 1, b2 + 2b+ 2), (b+ 1, b2 + 2b),

(2b+ 1, 4b), (2b− 1, 4b), (b2 + b− 1, b2 + 2b).

For b = 2, we have four solutions: (3, 10), (3, 8), (5, 8), and (7, 10).

Week 9. Proposed by Matthew McMullen, inspired by a problem suggested by
Molly Clairemont.

A certain dice game is played by starting with k fair dice, rolling them all at
once, and removing any sixes that appear. This is called a trial. The next trial
consists of rolling the remaining dice (or die) all at once and removing any sixes
that appear. The trials continue in this manner until there are no dice left, at
which point the game is over. For k = 2, find the expected number of trials per
game.

Solution. Let p(x) be the probability that the game ends after exactly x trials;
so p(1) = 1/36. To find p(x) for x > 1, notice that our first trial will either yield
no sixes, with probability 25/36, or exactly one six, with probability 2(1/6)(5/6).
In the first case, the remaining x − 1 trials will have to eliminate both sixes.
This occurs with probability p(x − 1). In the second case, we need to get no
sixes in the next x − 2 trials and then one six in the last trial. Therefore, for
x > 1,

p(x) =
25
36
p(x− 1) +

1
18

(
5
6

)x−1

.
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To find the expected value of x, we multiply through by 36x and do some
clever rearranging to get

11
∞∑

x=1

x p(x) = 11/36 + 25
∞∑

x=2

[(x− 1) p(x− 1)− x p(x)] + 25
∞∑

x=2

p(x− 1) + 2
∞∑

x=2

x(5/6)x−1

= 11/36 + 25(1/36) + 25(1) + 2(35)
= 96.

Therefore, the expected number of trials per game1 is 96/11 .

Week 10. (Continuation of last week’s problem.)

The decaying dice game from Week 9 is played starting with k dice. Let pk(x)
be the probability that the game ends after exactly x trials. Can you find an
equation for pk(x)? Can you find the expected value and standard deviation of
x?

Solution. Obviously, pk(1) = (1/6)k. If we get exactly 0 ≤ i < k sixes on the
first roll (an event which follows a binomial distribution), then we need to get
rid of the remaining k − i sixes in the last x− 1 rolls. Therefore, for x > 1,

pk(x) =
k−1∑
i=0

(
k

i

)(
5
6

)k−i(1
6

)i

pk−i(x− 1).

Let µk be the expected value of x, and let σ2
k be the variance of x. Then,

similar to the solution in Week 9, one can show2 that

µk =
1 +

∑k−1
i=1

(
k
i

) (
5
6

)k−i ( 1
6

)i
µk−i

1−
(

5
6

)k
and

σ2
k =

(1− µk)2
(

1
6

)k +
(

5
6

)k +
∑k−1

i=1

(
k
i

) (
5
6

)k−i ( 1
6

)i (σ2
k−i + (µk − µk−i − 1)2)

1−
(

5
6

)k .

1In our above calculations, we used the fact that p(x) is a probability distribution, so its
values sum to 1. Also, it can be shown that limx→∞ x p(x) = 0.

2Trust me!
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