
Coffee Hour Problems of the Week
Edited by Matthew McMullen

Otterbein College

Winter 2010

Week 1. Proposed by Matthew McMullen.

Show that
√

2009 +
√

2010 is a root of a fourth degree polynomial with integer
coefficients. Is there a non-zero polynomial with integer coefficients and of de-
gree less than four that

√
2009 +

√
2010 is a root of?

Solution. Let N =
√

2009 +
√

2010. Then

N2 = 4019 + 2
√

2009 · 2010.

Subtracting 4019 from both sides and squaring both sides of the resulting equa-
tion yields

N4 − 8038N2 + 40192 = 4 · 2009 · 2010,

or
N4 − 8038N2 + 1 = 0.

Thus, N is a root of x4 − 8038x2 + 1.
For the second part of the problem, suppose that aN3 + bN2 + cN + d = 0,

for some integers a, b, c, and d. If we multiply this out and collect like terms,
we have

(8039a+ c)
√

2009 + (8037a+ c)
√

2010 + 2b
√

2009 · 2010 + (4019b+ d) = 0.

Since none of the above terms are like radicals, the only way this equation can
be satisfied is if each of the “coefficients” is zero.1 Therefore, a = b = c = d = 0.
No such lower-degree polynomial exists.

1We are hand-waving here. Can you prove this fact?
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Week 2. Proposed by Matthew McMullen.

(a) Let m ≥ n ≥ 0. Show that

m∑
i=n

(
i

n

)
=
(
m+ 1
n+ 1

)
.

(b) Find
1729∑
i=1

(
3739− i

2010

)
and

1729∑
i=1

i

(
3739− i

2010

)
.

Solution. We will solve (a) using induction on m. For m = n, we have

m∑
i=n

(
i

n

)
=
(
n

n

)
= 1 =

(
n+ 1
n+ 1

)
=
(
m+ 1
n+ 1

)
.

Now suppose that the equality is true for some k ≥ n. Then

k+1∑
i=n

(
i

n

)
=

k∑
i=n

(
i

n

)
+
(
k + 1
n

)
=

(
k + 1
n+ 1

)
+
(
k + 1
n

)
=

(
k + 2
n+ 1

)
,

by the induction hypothesis and Pascal’s identity.
To evaluate the first sum in (b), we write it “backwards” and use (a):

1729∑
i=1

(
3739− i

2010

)
=

3738∑
i=2010

(
i

2010

)
=
(

3739
2011

)
.

To evaluate the second sum, we write it as a double sum and apply (a) twice:

1079∑
i=1

i

(
3739− i

2010

)
=

3739∑
j=2011

[
j−1∑

i=2010

(
i

2010

)]
=

3739∑
j=2011

(
j

2011

)
=
(

3740
2012

)
.
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Week 3. Proposed by Matthew McMullen.

If N is a positive integer with at least two prime divisors, define the delta value
of N to be p − q, where p > q are the two largest prime divisors of N . Find
the previous five years and the next five years with the same delta value as 2010.

Solution. Since 2010 = 2 ·3 ·5 ·67, the delta value of 2010 is 62. The only prime
pairs (q, p) with p − q = 62 and p · q < 2010 are (5, 67), (11, 73), and (17, 79).
Going through the appropriate multiples of p·q in each case, we find that the five
such previous years are 52 ·67 = 1675, 2 ·11 ·73 = 1606, 17 ·79 = 1343, 22 ·5 ·67 =
1340, and 3 · 5 · 67 = 1005.

Similarly, we find that the next five such years are 3·11·73 = 2409, 23 ·5·67 =
2680, 2 · 17 · 79 = 2686, 32 · 5 · 67 = 3015, and 22 · 11 · 73 = 3212.

Week 4. Proposed by Matthew McMullen.

Let F1 = 1 = F2 and Fn = Fn−2 +Fn−1 for n ≥ 3. (So Fn is the nth Fibonacci
number.) Find all n such that Fn = n2.

Solution. Notice that n2 + (n+ 1)2 > (n+ 2)2 for n > 3. So, if k > 3, Fk > k2,
and Fk+1 > (k + 1)2, then

Fk+2 = Fk + Fk+1

> k2 + (k + 1)2

> (k + 2)2.

Therefore, since F13 = 233 > 132 and F14 = 377 > 142, (strong) induction tells
us that Fn > n2 for n ≥ 13. Looking at F1 through F12, we see that F1 = 12

and F12 = 122. Therefore, n = 1 and n = 12 are the only solutions to Fn = n2.

Week 5. Proposed by Matthew McMullen.

(a) When I type ii into my TI-83 calculator, it gives me 0.2078795764. When
I type in (−i)i, it gives me 4.810477381. What are the exact values of these
numbers? More generally, how would you “make sense” of zw, where z and w
are complex numbers (and z 6= 0)?

(b) Classify all complex numbers z and w with |z| = 1 and zw ∈ R.
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Solution. Recall Euler’s formula:

eiθ = cos θ + i sin θ.

We may therefore write i = ei(π/2+2πk), where k is an integer. If we choose
k = 0 (and if the “usual” rules of exponents apply), we have

ii = (eπ/2i)i = e−π/2 = 0.2078795764 . . . .

Similarly,
(−i)i = (e−π/2i)i = eπ/2 = 4.810477381 . . . .

In general, zw is a multi-valued function which depends on our representation
of z. We are leaving off many details, but if we restrict ourselves to writing
w = a + bi and z = reiθ, where r > 0 and −π < θ ≤ π (which my calculator
seems to be doing), and if we want all of the usual rules of exponents to apply,
we get

zw = ew log z

= e(a+bi) log(reiθ)

= e(a+bi)(log r+iθ)

= ea log r−bθe(b log r+aθ)i.

If |z| = 1, then r = 1; and so

zw = e−bθeaθi.

The only way this can be real is if aθ is an integer multiple of π.

Week 6. Proposed by Matthew McMullen.

Suppose ∫ a

0

1√
1 +
√
x
dx = 2010.

Find, with minimal computational aid, the first two digits of a.

Solution. The substitution u =
√

1 +
√
x transforms the above equation into∫ w

1

(u2 − 1) du =
1005

2
,

where w =
√

1 +
√
a. Integrating the left-hand side and rewriting the equation

yields
2w3 − 6w − 3011 = 0.
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After some calculation (which could, if need be, be done by hand), we see
that 11.5 < w < 11.6. Solving this for a gives us

17, 226 < a < 17, 839.

So the first two digits of a are 17.

Week 7. 2009 Ohio MAA Student Team Competition.

Let P be a point picked at random inside the equilateral triangle ABC. What
is the probability that the angle ∠APB is an acute angle?

Solution. Without loss of generality, assume that A is the point (−1, 0), B
is the point (1, 0), and C is the point (0,

√
3). Then ∠APB is acute precisely

when P is outside of the unit circle (and inside the triangle).
Let R denote the region inside the triangle and outside the unit circle, let l1

be the line segment with endpoints (0, 0) and (1/2,
√

3/2), and let l2 be the line
segment with endpoints (0, 0) and (−1/2,

√
3/2). Then the area of R is the area

of the triangle, minus the areas of two equilateral triangles with sides of length
1, minus the circular segment bounded by l1 and l2. Thus, the area of R is

√
3−
√

3
2
− π

6
,

and the probability we seek is
√

3−
√

3
2 −

π
6√

3
=

3
√

3− π
6
√

3
≈ 0.1977.

Week 8. Proposed by Matthew McMullen.

Find
∞∑
n=1

2n− 1
(4n− 1)!

.

Solution. Using Taylor series, we have

sin 1 = 1− 1
3!

+
1
5!
− 1

7!
+ · · · ,

− cos 1 = −1 +
1
2!
− 1

4!
+

1
6!
− · · · , and

e−1 =
1
2!
− 1

3!
+

1
4!
− 1

5!
+ · · · .
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Adding these three equations gives us

sin 1− cos 1 + e−1 =
(

2
2!
− 2

3!

)
+
(

2
6!
− 2

7!

)
+
(

2
10!
− 2

11!

)
+
(

2
14!
− 2

15!

)
+ · · ·

=
4
3!

+
12
7!

+
20
11!

+
28
15!

+ · · ·

= 4
∞∑
n=1

2n− 1
(4n− 1)!

.

Thus, the answer is
sin 1− cos 1 + e−1

4
.

Week 9. Proposed by Matthew McMullen.

Let T be the region bounded by an isosceles triangle. Mathematically describe
all ways of dividing T into two equal-area pieces using a straight line.

Solution (outline). Suppose the triangle has vertices (0, 0), (b, h), and (−b, h),
where b, h > 0. Let P be the point (α, h), where 0 ≤ α ≤ b. We will find the
point Q on the triangle such that PQ divides T as required. Since the line x = 0
divides T in half, we need to find Q such that the two triangular regions formed
by PQ and x = 0 have equal areas. After much (messy) work, we find that

Q =
(
−αb
α+ b

,
αh

α+ b

)
.

Since the line y = h/
√

2 also divides T in half, another possibility is that P
has coordinates (α, hα/b), where b/

√
2 ≤ α ≤ b. Then Q is the point on the

triangle such that the two triangular regions formed by PQ and y = h/
√

2 have
equal areas. After some more (messy) work, we find that

Q =
(
−b2

2α
,
hb

2α

)
.

Week 10. (a) Proposed by Ryan Berndt; (b) 1999 ECC Problem 5.

(a) Show that the formula∫ 1

−1

p(x) dx = p(−
√

3/3) + p(
√

3/3)

yields exact results for polynomials of degree three or less.
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(b) (i) Find the points x1 and x2 so that the formula∫ 1

0

p(x) dx = p(x1) + p′(x2)

yields exact results for polynomials of degree two or less.

(ii) Determine the error in using the resulting formula for a third degree
polynomial p(x) with leading coefficient 1.

Solution. For (a), let p(x) = ax3 + bx2 + cx+ d. Then∫ 1

−1

p(x) dx =
ax4

4
+
bx3

3
+
cx2

2
+ dx

∣∣∣1
−1

=
2b
3

+ 2d

= p(−
√

3/3) + p(
√

3/3).

For (b)(i), let p(x) = ax2 + bx+ c. Then∫ 1

0

p(x) dx =
ax3

3
+
bx2

2
+ cx

∣∣∣1
0

=
a

3
+
b

2
+ c,

and

p(x1) + p′(x2) = ax2
1 + bx1 + c+ 2ax2 + b

= a(x2
1 + 2x2) + b(x1 + 1) + c.

Equating coefficients of a and b gives us x1 = −1/2 and x2 = 1/24.
For (b)(ii), let p(x) = x3 + ax2 + bx + c. Leaving off the details, the error

we seek is given by∣∣∣∣∫ 1

0

p(x) dx− p
(
−1

2

)
− p′

(
1
24

)∣∣∣∣ =
71
192

.
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