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Week 1. Proposed by Matthew McMullen

You and a friend order a perfectly round 14-inch (in diameter) pizza cut into
six congruent slices. The 14 inches includes a 1-inch-wide ring of outer crust.
There is one piece left that you want to split, but you are tired of the crust and
don’t want any more of it. Describe all ways to divide the non-crust part of
the slice into two equal-area pieces, one of which has no part of the crust on it,
using a single straight-line cut.

Solution. Since the entire non-crust part of the pizza has area 36π, each slice
has a “non-crust” area of 6π. Therefore, we wish to divide the slice into two
pieces, each with non-crust area 3π, and one of which has no part of the crust.
For convenience, let’s represent the non-crust part of the slice as the region, R,
in the plane, bounded by y =

√
3x, y = −

√
3x, and y =

√
36− x2.

One way to bisect R is with a line, l, through the point (3, 3
√

3). One of
the resulting pieces would then be a triangle with base 6. Since the area of this
triangle must be 3π, its height must be π. Therefore, l is the line through the
points (3, 3

√
3) and (−π/

√
3, π).

More generally, fix 2π/
√

3 ≤ α ≤ 6 and let P be the point (α/2,
√

3α/2).
We wish to bisect R with a line, l, through P . One of the resulting pieces will
be a triangle with base α; and so its height must be 6π/α. Therefore, l is the
line through the points P and (−2

√
3π/α, 6π/α). (We better get an accurate

ruler!)

Week 2. Proposed by Matthew McMullen

Find all four-digit numbers, N , such that the number formed by writing the
digits of N backwards is a multiple of N .

Solution. Obviously, N can be any four-digit palindrome, but are there any
other solutions? Let N be the number formed by writing the digits of N back-
wards. We want to find all solutions to the equation N = kN , where k is a
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positive integer. We have already dealt with the case k = 1; and if k ≥ 10, then
kN has more digits than N . Therefore we need only consider k = 2, . . . , 9.

First suppose k ∈ {5, 6, 8}. Then N must start with a 1 and N must end in
a 1. But this is impossible since kN cannot end in a 1.

Next suppose k = 7. Then N must start in a 1 and N must end in a 1.
Thus, N must end in a 3 and N must start with a 3, which is impossible since
kN > 7000.

Similar reasoning shows that k cannot be 2 or 3. The only values of k that
cannot be immediately ruled out are 4 and 9. If k = 9, then N must start with
a 1 and N must end in a 1. So, N must end in a 9. Continuing in this manner,
we see that N = 1089 is the only solution (9801 = 9× 1089). By similar logic,
if k = 4, then N = 2178 is the only solution (8712 = 4× 2178).

Week 3. 2010 AIME II.

Find the smallest positive integer n with the property that the polynomial
x4 − nx+ 63 can be written as a product of two nonconstant polynomials with
integer coefficients.

Solution. Put P (x) = x4 − nx+ 63. P has a linear factor if and only if it has
a root. Suppose α is a root of P . Then α4 − nα+ 63 = 0, or

n = α3 +
63
α
.

Thus, α must be a positive divisor of 63; and so the smallest value of n in this
case is 48 (when α = 3).

We must also consider the possibility that P has two quadratic factors, say
P (x) = (x2 +ax+b)(x2 +cx+d). Multiplying this out and equating coefficients
of like powers of x tells us that b+d = a2 and bd = 63. So either {b, d} = {1, 63}
or {b, d} = {7, 9} The later gives us the smallest possible value of n, namely
n = 8 .

Week 4. Proposed by Matthew McMullen.

Let f(x) =
√
x and g(x) = x+ a, where a 6= 0. Suppose there exists an x0 such

that f(x0) = g(x0) and f(f(x0)) = g(g(x0)). Find a.

Solution. Put u = 4
√
x0. We are given that u2 = u4 + a and u = u4 + 2a.

Solving the first equation for a and plugging this result into the second equation
yields u = u4 + 2(u2 − u4). Rearranging and factoring tells us that

u(u− 1)(u2 + u− 1) = 0.
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Since a 6= 0, u 6= 0, 1. Also, since u is a fourth root, u ≥ 0. Thus,

u =
−1 +

√
5

2
;

and so a = u2(1− u2) = −2 +
√

5 .

Week 5. Proposed by Matthew McMullen (inspired by AMM).

You have five balls, numbered 1 to 5, that you will put into five urns, also num-
bered 1 to 5. First, ball 1 is put in a randomly selected urn. Then, ball 2 is
put in urn 2 if it is empty, otherwise it is put in a randomly selected empty
urn. Then, ball 3 is put in urn 3 if it is empty, otherwise it is put in a randomly
selected empty urn. Then, ball 4 is put in urn 4 if it is empty, otherwise it is put
in a randomly selected empty urn. Finally, ball 5 is put in the last empty urn.
The random variable X represents the number of balls whose number matches
the number of the urn it is put in. Find the expected value of X.

Solution. If ball 1 is put in urn 1 (which happens with probability 1/5), then
all of the balls will be put in their proper urns. If ball 1 is put in urn 5 (which
happens with probability 1/5), then only balls 2, 3, and 4 will be put in their
proper urns.

If ball 1 is put in urn 4, then balls 2 and 3 will be put in their proper urns
and ball 4 is put in either urn 1 or 5. So our final ball placements would be
42315 or 52314, both occurring with probability 1/10.

If ball 1 is put in urn 3, then we have four possible outcomes: 32145 and
52143 (both with probability 1/15), and 42135 and 52134 (both with probability
1/30).

If ball 1 is put in urn 2, then we have eight possible outcomes: 21345 and
51342 (probability 1/20), 41325 and 51324 (probability 1/40), 31245 and 51243
(probability 1/60), and 41235 and 51234 (probability 1/120).

Let p(x) = Prob(X = x). Putting everything together, we see that p(0) =
1/120, p(1) = 1/12, p(2) = 7/24, p(3) = 5/12, p(4) = 0, and p(5) = 1/5. Thus,
the expected value of X is 35/12 .

Week 6. Proposed by Matthew McMullen.

Find the maximum value of
∞∑

n=0

(−1)
bn/2c

xn,

where −1 < x < 1.
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Solution. Let S(x) denote the sum in question. Since S converges absolutely
for |x| < 1,

S(x) = (1 + x)− (x2 + x3) + (x4 + x5)− (x6 + x7) + · · ·
= (1 + x)(1− x2 + x4 − x6 + · · · )

=
1 + x

1 + x2
.

Therefore,

S′(x) =
−(x2 + 2x− 1)

(1 + x2)2
;

and so the maximum value of S occurs when x = −1+
√

2. Thus, the maximum

value of S is S(−1 +
√

2) = (1 +
√

2)/2 .

Week 7. Proposed by Matthew McMullen (inspired by College Math. J.).

Prove that a differentiable function on the real line is a quadratic function if and
only if the intersection of any two of its tangent lines lies midway horizontally
between the points of tangency.

Solution. Let f be differentiable on the real line. The above condition is
equivalent to the fact that, for any x1 6= x2, the solution to

f ′(x1)(x− x1) + f(x1) = f ′(x2)(x− x2) + f(x2)

is x = (x1 + x2)/2. In other words, we need to show that f is quadratic if and
only if

f(x)− f(y)
x− y

=
f ′(x) + f ′(y)

2
, (1)

for all x 6= y.
It is easy to check that (1) holds for quadratic functions f . To show the

converse, suppose that (1) holds. Fixing y and differentiating with respect to x
yields (after some simplification)

f ′′(x) =
f ′(x)− f ′(y)

x− y
,

for all x 6= y. Differentiating with respect to x a second time (and simplifying)
yields f ′′′(x) = 0, for all x 6= y. Since y is arbitrary, we actually have that
f ′′′ ≡ 0. Therefore, f is quadratic.

(⇒ direction proven by Melissa Tress.)
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Week 8. From the 2010 Harvard-MIT Mathematics Tournament.

Calculate
∞∑

n=2

∞∑
k=2

1
kn · k!

.

Solution. We have
∞∑

n=2

∞∑
k=2

1
kn · k!

=
∞∑

k=2

1
k!

∞∑
n=2

1
kn

=
∞∑

k=2

1
k!
· 1
k2
· 1

1− 1
k

=
∞∑

k=2

1
k!
· 1
k(k − 1)

=
∞∑

k=2

1
k!

(
1

k − 1
− 1
k

)

=
∞∑

k=2

1
k!
· 1
k − 1

−
∞∑

k=2

1
k!
· 1
k

=
∞∑

k=1

1
(k + 1)!

· 1
k
−

∞∑
k=2

1
k!
· 1
k

=
1
2

+
∞∑

k=2

1
k

(
1

(k + 1)!
− 1
k!

)

=
1
2
−

∞∑
k=2

1
(k + 1)!

=
1
2
−

( ∞∑
k=0

1
k!
−

2∑
k=0

1
k!

)

=
1
2
− e+ 1 + 1 +

1
2

= 3− e .
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Week 9. From the 1993 Putnam Exam.

The horizontal line y = c intersects the curve y = 2x−3x3 in the first quadrant,
creating two regions: the first region is bounded by the y-axis, the line y = c and
the curve; the other lies under the curve and above the line y = c between their
two points of intersection. Find c so that the areas of these two regions are equal.

Solution. Let a and b denote the x-coordinates of the intersection points (in
the first quadrant) of y = c and the curve, where a < b. Then we need to find
c such that ∫ a

0

(c− 2x+ 3x3) dx =
∫ b

a

(2x− 3x3 − c) dx.

This equation simplifies to b = 3c/2, and we already know that 2b − 3b3 = c.
Putting these two equations together gives us c = 4/9 .

(Solved by Denise Wolfe.)

Week 10. Proposed by Matthew McMullen.

Suppose that y ≥ 3 and

ln
(
x

y

)
=

lnx
ln y

.

Find the minimum possible value of x.

Solution. We may write x = ea and y = eb, where a is any real number and
b ≥ ln 3. Since f(u) = eu is an increasing function, our problem can be solved
by minimizing

a =
b2

b− 1

on the interval [ln 3,∞). Since

da

db
=
b(b− 2)
(b− 1)2

,

the minimum value of a occurs when b = 2. Thus, the minimum value of a is 4;
so the minimum possible value of x is e4 .
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