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Week 1. Proposed by Matthew McMullen.

Find all integers x and y such that

x2 + 41y2 = 2009.

How many rationals x and y can you find that satisfy this equation?

Solution. The given equation describes the ellipse

x2

2009
+
y2

49
= 1.

Thus, −7 ≤ y ≤ 7. Testing all integers in the range, we find that (0,−7) and
(0, 7) are the only integer points on the curve.

Finding all rational points on the curve is much trickier. In fact, if an ellipse
has one rational point it has infinitely many, and there is a way to classify all
such points. The classical approach (in this case) is to fix a rational t and find the
second intersection point between the ellipse and the line connecting the points
(t, 0) and (0, 7). Not only will this intersection point have rational coefficients,
but, as t ranges through all rationals (including the point at infinity), all rational
points on the curve will be accounted for.1

After careful work, we see that all rational points on the curve are given by
(0, 7) and (

4018t
t2 + 2009

,
7(t2 − 2009)
t2 + 2009

)
,

where t ranges through all rational numbers.

Integer points found by Sean Poncinie.

1This requires proof, of course, but the proof is not terribly difficult.
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Week 2. Proposed by Matthew McMullen.

Let C1 denote a circle of radius 1 centered at the origin, and let C2 denote a
circle of radius 2 centered at the point (5, 0). How many lines are tangent to
both circles simultaneously? Find an equation for each of these lines.

Solution. There are four common tangent lines, two interior tangents and two
exterior tangents. The four equations are

y = ±3
4

(
x− 5

3

)
and ±

√
6

12
(x+ 5).

The easiest way to find these is to use similar triangles. For example, to
find the interior tangent with positive slope, we use similar triangles to see that
the x intercept of this line is (5/3, 0). Then we use similar triangles and the
Pythagorean Theorem to see that another point on the line is (3/5,−4/5), and
the equation of the line is easily calculated. In a similar way, we can find the
exterior tangents.

Solved by Sean Poncinie.

Week 3. Proposed by Matthew McMullen.

The Pell numbers are defined by

Pn =

 0 if n = 0
1 if n = 1
2Pn−1 + Pn−2 if n ≥ 2

.

(a) Find the first twelve Pell numbers.

(b) Prove that, for all n ≥ 1, a triangle with sides of length 2PnPn+1, P 2
n+1−P 2

n ,
and P2n+1 is a right triangle with integer sides whose legs differ by 1. (This
actually classifies all such right triangles!)

Solution (outline). The first twelve Pell numbers are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, and 5741.

First show, using induction on m, that

P2n+1 = Pm+1P2n−m+1 + PmP2n−m,

for all n ≥ 0 and 0 ≤ m ≤ 2n. In particular, for m = n we have

P2n+1 = P 2
n+1 + P 2

n .
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Next show, using induction on n, that

P 2
n+1 − P 2

n − 2PnPn+1 = (−1)n,

for all n ≥ 0. Finally,

(2PnPn+1)2 + (P 2
n+1 − P 2

n)2 = P 4
n+1 + 2P 2

nP
2
n+1 + P 4

n

= (P 2
n+1 + P 2

n)2

= P 2
2n+1.

Week 4. Proposed by Matthew McMullen.

Let
I =

∫ ∞
0

1√
x+ x2

dx.

(a) Show that I exists.

(b) Evaluate I.

Solution. We have that

I =
∫ 1

0

1√
x+ x2

dx+
∫ ∞

1

1√
x+ x2

dx

<

∫ 1

0

1√
x
dx+

∫ ∞
1

1
x2

dx

< ∞.

To evaulate I, we first substitute u2 = x to get

I = 2
∫ ∞

0

1
u3 + 1

du.

Using partial fractions, we may rewrite this as I = (2/3)I1 + I2, where

I1 =
∫ ∞

0

(
1

u+ 1
− u− 1/2
u2 − u+ 1

)
du and I2 =

∫ ∞
0

1
u2 − u+ 1

du.

Now,

I1 = lim
M→∞

[
ln(u+ 1)− 1

2
ln(u2 − u+ 1)

]M
0

= 0.

To evaluate I2, we complete the square and substitute v = u− 1/2. Thus,
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I = I2

=
∫ ∞
−1/2

1
v2 + (

√
3/2)2

dv

= lim
M→∞

2√
3

arctan
(

2v√
3

) ∣∣∣∣M
−1/2

=
2√
3

(π
2

+
π

6

)
=

4π
3
√

3
.

Week 5. Proposed by Matthew McMullen.

Let n be a positive integer, and let p and q be such that 0 < p < 1 and q = 1−p.
For k = 0, 1, . . . , n define

P (k) =
(
n

k

)
pkqn−k.

Show that
n∑
k=0

P (k) = 1, (1)

n∑
k=0

kP (k) = np, and (2)

n∑
k=0

(k − np)2P (k) = npq. (3)

(So P describes a probability distribution with mean np and variance npq.)

Solution. Equation (1) follows directly from the binomial theorem since

n∑
k=0

P (k) = (p+ q)n = 1.
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Equation (2) holds since

n∑
k=0

kP (k) = np

n∑
k=1

1
np
kP (k)

= np

n−1∑
k=0

(n− 1)!
k!(n− k − 1)!

pkqn−k−1

= np(p+ q)n−1

= np.

To prove (3), we first claim that

n∑
k=0

k2P (k) = npq + (np)2.

Notice that this equation is equivalent to

1
np

n∑
k=1

k2P (k) = 1 + p(n− 1),

and

1
np

n∑
k=1

k2P (k) =
n−1∑
k=0

(k + 1)
(n− 1)!

k!(n− k − 1)!
pkqn−k−1

= 1 +
n−1∑
k=0

k
(n− 1)!

k!(n− k − 1)!
pkqn−k−1

= 1 + p(n− 1)
n−2∑
k=0

(n− 2)!
k!(n− k − 2)!

pkqn−k−2

= 1 + p(n− 1)(p+ q)n−2

= 1 + p(n− 1).

Therefore,

n∑
k=0

(k − np)2P (k) =
n∑
k=0

k2P (k)− 2np
n∑
k=0

kP (k) + (np)2
n∑
k=0

P (k)

= npq + (np)2 − 2(np)2 + (np)2

= npq.

Solved by Sean Poncinie.
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Week 6. Proposed by Matthew McMullen.

For n a positive integer let

P (n) =
n∑
k=1

arctan
1√
k
.

Does limn→∞ P (n) exist? If so, prove it; if not, find constants a > 0 and r such
that

lim
n→∞

P (n)
nr

= a.

Solution. Notice that

lim
k→∞

arctan(1/
√
k)

1/
√
k

(u=1/
√
k)

= lim
u→0+

arctanu
u

(l’H)
= lim

u→0+

1
u2 + 1

= 1.

Thus, by the Limit Comparison Test, since
∑∞
k=1 1/

√
k diverges, P (n) diverges.

For the second part, we claim that r = 1/2 and a = 2. We arrived at this
result by comparing P (n) to an appropriate integral, but we will prove it by
using the Stolz-Cesàro Theorem (S-C). We have

lim
n→∞

P (n)√
n

(S-C)
= lim

n→∞

arctan(1/
√
n+ 1)√

n+ 1−
√
n

= lim
n→∞

(
√
n+ 1 +

√
n)
(

1√
n+ 1

+ o

(
1√
n

))
= lim

n→∞

(
1 +

√
n

n+ 1

)
= 2.

Week 7. Proposed by Alex Frentz.

(a) Write a precise mathematical definition for what it means for a function f
to be symmetric about the point (a, b).

(b) Is every cubic polynomial symmetric about some point? Explain (with
proof or counterexample).
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Solution. The function f(x) is symmetric about (a, b) if f(x + a) − b is odd;
i.e., if

f(−x+ a)− b = −(f(x+ a)− b).

Let f(x) = ax3 + bx2 + cx + d be a cubic polynomial. We can “complete
the cube” to show that every cubic polynomial is symmetric about its inflection
point. We may write

f(x) = a

(
x+

b

3a

)3

+B

(
x+

b

3a

)
+ f

(
− b

3a

)
,

where B = (3ac− b2)/(3a).

Solved by Sean Poncinie.

Week 8. Proposed by Matthew McMullen.

Classify all integers n such that 2n − n2 is divisible by 7.

Solution. Clearly, n ≥ 0, since otherwise 2n − n2 wouldn’t be an integer. By
the division algorithm we may write n = 21q+ r for nonnegative integers q and
r with 0 ≤ r < 21. Working mod 7, we see that

2n − n2 = 221q+r − (21q + r)2

= (23)7q · 2r − (21q + r)2

≡ 2r − r2.

Trying all possible values of r (and working mod 7) we see that only
r = 2, 4, 5, 6, 10, and 15 solve 2r − r2 = 0. Thus, 2n − n2 is divisible by 7 iff n
is positive and

n ≡ 2, 4, 5, 6, 10, or 15 (mod 21).

Week 9, Problem A. Proposed by Dave Stucki.

Find
∞∑
n=1

n

2n
.
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Week 9, Problem B. Proposed by Sean Poncinie and Adam Wolfe.

Find ∫ π/2

0

x ex sinx dx.

Solutions. The answer to Problem A is 2. We will show, more generally, that

∞∑
n=1

nxn =
x

(1− x)2
,

for −1 < x < 1. To see this put

f(x) =
∞∑
n=1

nxn.

By the ratio test, f(x) converges for −1 < x < 1, and clearly f(0) = 0. If we
integrate f(x)/x we get a geometric series which sums to x/(1− x). Therefore,

f(x) = x

(
x

1− x

)′
=

x

(1− x)2
.

To solve Problem B we first note that, due to integration by parts,∫
ex sinx dx = −ex cosx+

∫
ex cosx dx =

1
2
ex(sinx− cosx).

Next, we use integration by parts again (with u = x and dv = ex sinx dx) to get∫
xex sinx dx =

1
2
xex(sinx− cosx)− 1

2

∫
ex(sinx− cosx) dx

=
1
2
xex(sinx− cosx) +

1
2
ex cosx.

Therefore, ∫ π/2

0

x ex sinx dx =
1
2

(π
2
eπ/2 − 1

)
.

8



Week 10. Proposed by Matthew McMullen.

Find

lim
n→∞

4n

2−

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n 2s

 .

Solution. The key to this problem is to note that√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n 2s

= 2 cos
( π

2n+1

)
.

This can be shown using induction and the half angle formula.
Therefore,

lim
n→∞

4n

2−

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n 2s

 = lim
n→∞

4n
(

2− 2 cos
( π

2n+1

))
(u=π/2n+1)

=
π2

4
lim
u→0

2 · 1− cosu
u2

=
π2

4
.
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