
Coffee Hour Problems of the Week
Matthew McMullen - Editor

Otterbein College

Autumn 2008

Week 1. Classic problem proposed by Matthew McMullen.

Each letter in the following “alphametic” equation represents a different
digit from 0 to 9:

SEND + MORE = MONEY

Find the unique value of each of the letters so that the equation is true.

Solution. Since we are adding two four-digit numbers to get a five-digit
number, M=1 and S is 8 or 9. Thus, O=0, and there is no carry from the
hundred’s place; so S=9. We also know that N is one more than E, so R=8.

Next we can go through the five possible values of N (3, 4, 5, 6, or 7)
one by one. Omitting the details, we see that the only possibility is N=6.
So E=5, D=7, and Y=2.

(Solved by Denise Wolfe, Donna Irvin, Sean Poncinie, and Justin Young.)

Week 2. Found problem proposed by Alex Frentz.

You have 3000 gallons of water at point A on the north side of the desert.
Your friends at point B on the south side of the desert want the water, but
point B is 1000 miles away. You do have a camel, however. The camel can
carry up to 1000 gallons of water at a time. The problem is, for every mile
the camel walks, it drinks one gallon of water. How much water can you get
to point B?

Solution. We first load the camel with 1000 gallons of water, travel 200
miles, unload 600 gallons, and return to point A. We do the same with
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another 1000 gallons, and then we take the last 1000 gallons, travel 200
miles, and unload the remaining 800 gallons. So we have 2000 gallons of
water 200 miles from point A.

Next we load the camel with 1000 gallons of water, travel 1000/3 miles,
unload 1000/3 gallons, and return to the rest of the water. We then take
the remaining 1000 gallons, travel 1000/3 miles, and unload 2000/3 gallons.
So we have 1000 gallons of water 1600/3 miles from point A.

Finally, we take the 1000 gallons of water, travel the 1400/3 miles to
point B, and unload the 1600/3 gallons to the cheers of our thirsty friends.

(Solved by Justin Young and Sean Poncinie.)

Week 3. Found problem proposed by Matthew McMullen.

A nine-digit number, N , contains each of the digits from 1 through 9. For
k = 1, 2, . . . 9, the number formed by the first k digits of N is divisible by k.
Find N .

Solution. First notice that k = 1 and k = 9 does not give you any infor-
mation since every number is divisible by 1 and the digits 1, 2, . . . , 9 sum to
45, which is divisible by 9. Also, the fifth digit must be a 5, and every other
digit, starting with the second one, must be even.

By the divisibility test for 4, the fourth digit must be a 2 or a 6; and, by
the divisibility test for 6, the corresponding sixth digit must be an 8 or a 4.
Similarly, we can go through the divisibility tests for the other values of k,
excluding k = 7, to narrow our list of possible Ns to the following ten num-
bers: 147258963, 741258963, 189654327, 981654327, 789654321, 987654321,
183654729, 381654729, 189654723, and 981654723.

Checking each of these for k = 7 gives us the unique answer: 381654729.

(Solved by Sean Poncinie.)

Week 4. Original problem proposed by Greg Oman.

Show that for any odd prime p there is a unique positive integer n such that
n(p+ n) is a perfect square.
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Solution. Let p be an odd prime. We wish to find a unique n such that

n(p+ n) = k2,

for some positive integer k. Multiplying this equation by 4 and completing
the square in n yields the equivalent equation

(2n+ p+ 2k)(2n+ p− 2k) = p2.

Since k > 0 and p is prime, we must have 2n+p+2k = p2 and 2n+p−2k = 1.
Adding these two equations and solving for n gives

n =
p2 + 1− 2p

4
=
(
p− 1

2

)2

.

(Unsolved !)

Week 5. Proposed by Matthew McMullen.

Down’s syndrome is present in roughly 1 in 900 births. Amniocentesis is
a medical procedure that can be used to test for Down’s syndrome in a
fetus. This test is 99.5% accurate. A pregnant woman decides to get an
amniocentesis, and her fetus tests positive for Down’s syndrome. What is
the probability that her baby actually has Down’s syndrome?

Solution. Let D denote the event that the fetus has Down’s syndrome and
+ the event that the amniocentesis comes back positive for Down’s. We are
given that

P (D) =
1

900
, P (Dc) =

899
900

, P (+|D) =
995
1000

, and P (+|Dc) =
5

1000
.

By Bayes’ Theorem,

P (D|+) =
P (D)P (+|D)

P (D)P (+|D) + P (Dc)P (+|Dc)
.

Thus,

P (D|+) =
199
1098

≈ 18.12%.

(Solved by Zach Thomas, Justin Young (almost!), and Sean Poncinie.)

3



Week 6. Proposed by Matthew McMullen.

The hailstone function is a function from the integers to the integers defined
as follows: if the input is even, divide by 2; if the input is odd, multiply by
3 and add 1. A famous unsolved conjecture is that every positive integer
will eventually iterate to 1 under this function. For example,

13→ 40→ 20→ 10→ 5→ 16→ 8→ 4→ 2→ 1.

(a) What happens if you iterate −17 with the hailstone function?

(b) Of all the positive integers from 1 to 120, which takes longest to iterate
to 1? How many iterations are needed for this number? (Hint: A computer
program will help here!)

Solution. (a) −17 loops back to itself after 18 iterations.

(b) 97, with 118 iterations, takes the longest to iterate to 1.

(Solved by Sean Poncinie, Justin Young (part (b) only), and Delisa Mason.)

Week 7. Proposed by Matthew McMullen.

The Witch of Agnesi (named for the mathematician Maria Agnesi) is any
curve of the form

y =
8a3

x2 + 4a2
,

where a > 0.

(a) Show that the area between the Witch and the x-axis is 4πa2.

(b) Show that the volume of revolution of the Witch about the x-axis is
4π2a3.

(c) Is the surface area of revolution of the Witch about the x-axis finite?
Explain.
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Solution. (a) We have

A =
∫ ∞
−∞

8a3

x2 + 4a2
dx

= 2a
∫ ∞
−∞

1
( x2a)2 + 1

dx

(u= x
2a

)
= 4a2

∫ ∞
−∞

1
u2 + 1

du

= 4a2 arctanu
∣∣∣∞
−∞

= 4a2
(
π

2
− −π

2

)
= 4πa2.

(b) We have

V = π

∫ ∞
−∞

(
8a3

x2 + 4a2

)2

dx

= 64πa6
∫ ∞
−∞

1
(x2 + 4a2)2

dx.

If you make the substitution 2a tan θ = x and use the identity cos2 θ =
(cos(2θ) + 1)/2, then we see (after much careful work) that

V = 8πa3
∫ π/2

−π/2

cos(2θ) + 1
2

dθ

= 4πa3(sin(2θ)/2 + θ)
∣∣∣π/2
−π/2

= 4πa3
(
π

2
− −π

2

)
= 4π2a3.

(c) Since the Witch behaves like y = 1/x2 for x large, it is enough to show
that ∫ ∞

1
y
√

1 + (y′)2 dx <∞.

For x large enough, the above integrand behaves like 1/x2, so the surface
area is indeed finite.

(Solved by Sean Poncinie(parts (a) and (b).)
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Week 8. Proposed by Matthew McMullen.

(a) Show that if a triangle has sides of length 5, 7, and 8, then one of its
angles measures 60◦.

(b) How many non-similar triangles with sides of integer length and an an-
gle of 60◦ can you find?

Solution. (a) Notice that

72 = 82 + 52 − 2 · 8 · 5 · cos 60◦.

Thus, by the Law of Cosines, a triangle with sides of length 5, 7, and 8 has
a 60◦ angle between the sides of length 5 and 8.

(b) I can find infinitely many such triangles. First, we will find infinitely
many non-similar triangles with rational sides and a 60◦ angle; then we will
multiply each side by a common denominator.

Let a and b represent the lengths of the sides that make up the 60◦ angle
and let c represent the length of the remaining side, where a, b, and c are
rational. By rescaling we may assume, without loss of generality, that b = 1.
By the Law of Cosines, then, we must have

c2 = a2 + 1− a,

or, equivalently,
(2c+ 2a− 1)(2c− 2a+ 1) = 3.

To find solutions to this equation, let α and β be two rational numbers
such that α · β = 3, and suppose 2c+ 2a− 1 = α and 2c− 2a+ 1 = β. Then

c =
α2 + 3

4α
and a =

(α− 1)(α+ 3)
4α

.

Therefore, triangles with side lengths a = (α − 1)(α + 3), b = 4α, and
c = α2 +3, where α ≥ 2 is an integer, will have integer sides and a 60◦ angle
(between the sides of length a and b). It is a nice (i.e. tedious) exercise to
show that these triangles are similar only for α = 2 and α = 5. So, for every
α ≥ 3 we have a non-similar triangle with integer sides and an angle of 60◦.

(Solved by Sean Poncinie (12 triangles).)
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Week 9. Proposed by Matthew McMullen.

(a) Let M be an invertible square matrix, and let λ 6= 0. If M2 = λM , find
M .

(b) Let M =

(
a −2008
b c

)
, where a, b, and c are integers. Find the small-

est positive value of b such that M2 = 0, where 0 denotes the 2 × 2 zero
matrix.

(c) Find a matrix M of the form M =

(
a −2008
b c

)
, where a, b, and c

are non-zero integers and M2 = 2M .

Solution. (a) Suppose M2 = λM . Since M is invertible, we may multiply
both sides of this equation by M−1 to obtain M = λI, where I denotes the
2× 2 identity matrix. In other words, M is the diagonal matrix with λs on
the diagonal and 0s everywhere else.

(b) Since the top left entry of M2 is a2 − 2008b, we must have that a2 −
2008b = 0. Therefore, we are looking for the smallest (non-zero) value of b
such that 2008b is a perfect square. Since 2008 = 23 ·251, b = 2 ·251 = 502 .(

If you’re curious, one such M is given by

(
1004 −2008
502 −1004

)
.

)
(c) Equating the top left entries of the resulting matrices gives us a2 −
2008b = 2a. Solving for a gives

a = 1±
√

2008b+ 1.

Thus, we are looking for a non-zero value of b such that 2008b + 1 is a
perfect square. Using Mathematica (okay, so we cheated a bit!), we find
that b = 4(2008) + 4 = 8036 works. So, one solution is

M =

(
4018 −2008
8036 −4016

)
.
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