Coffee Hour Problems of the Week Matthew McMullen - Editor

Otterbein College

Winter 2009

Week 1. Proposed by Matthew McMullen.

Show that $2009 = p^2 \cdot q$, where p and q are distinct prime numbers, and find the next five years that will factor in this way.

Week 2. Proposed by Matthew McMullen.

The Erdős-Straus conjecture (an unsolved problem since 1948) states that for all integers $n \ge 2$, there exist positive integers x, y, and z such that

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z};$$

for example,

$$\frac{4}{13} = \frac{1}{4} + \frac{1}{18} + \frac{1}{468}$$

Show that this conjecture is true for n = 2009. (Bonus: Find a solution with x, y, and z all distinct.)

Week 3. Proposed by Matthew McMullen.

For integers $n \ge 2$, n # (read *n* primorial) is defined as the product of all primes less than or equal to *n*. For example, $10 \# = 2 \cdot 3 \cdot 5 \cdot 7 = 210$. Prove that

$$2 + 2003 \#, 3 + 2003 \#, 4 + 2003 \#, \dots, 2010 + 2003 \#$$

is a list of 2009 consecutive composite numbers. (*Fun fact:* The first number in the above list has 846 digits!)

Week 4. Proposed by Ryan Berndt and Matthew McMullen.

It can be shown that if f(x) is integrable on [0,1], then $[f(x)]^2$ is integrable on [0,1] and

$$\int_0^1 f(x) \, dx \le \left(\int_0^1 [f(x)]^2 \, dx \right)^{1/2}. \tag{1}$$

(a) Show that

$$\int_0^1 \sqrt{x} \cdot e^{x^2} \, dx < \frac{e}{2} \, .$$

(b) Research the Arithmetic/Quadratic Means Inequality, and use it to prove inequality (1).

Week 5. Proposed by Matthew McMullen.

The minute hand of a clock is twice as long as the hour hand. Find a time when the distance between the tips of the hour and minute hands is increasing at the largest rate.

Week 6. Proposed by Ryan Berndt.

Your linear algebra teacher gives you two 5×5 matrices, A and B, and asks whether or not they are inverses of each other. After some tedious matrix multiplication, you find that AB = I, where I denotes the 5×5 identity matrix. According to the definition of matrix inverses you still need to show that BA = I (remember that matrix multiplication is *not* commutative). You are tired and don't want to do any more matrix multiplication. Can you conclude immediately that BA = I?

Week 7. Proposed by Matthew McMullen.

A top-secret vault is opened by pressing four buttons, conveniently numbered 1-4, in the correct order (without repeats). The lock doesn't reset if the incorrect code is entered. (For example, pressing button 1 then 2 then 3 then 4 then 1 tries two different combinations: 1 2 3 4 and 2 3 4 1.)

(a) You have no idea what the combination is. Assuming optimal strategy, what is the maximum number of button-pushes that are needed to open the vault?

(b) Another vault with an unknown combination has n buttons. Assuming optimal strategy, what is the maximum number of button-pushes that are needed to open the vault?

Week 8. Classic problem proposed by Matthew McMullen.

You are standing on a ladder that is leaned up against a house. Your "friend" on the ground pulls the base of the ladder away from the house at a constant rate. Describe the curve that your body traces out.

Week 9. Proposed by Matthew McMullen.

It can be shown that $\sin 80^\circ=\sin 40^\circ+\sin 20^\circ.$ Find all angles θ such that $0^\circ\leq\theta<360^\circ$ and

 $\sin 4\theta = \sin 2\theta + \sin \theta.$