Coffee Hour Problems of the Week $_{Matthew McMullen - Editor}$

Otterbein College

Autumn 2008

Week 1. Classic problem proposed by Matthew McMullen.

Each letter in the following "alphametic" equation represents a different digit from 0 to 9:

SEND + MORE = MONEY

Find the *unique* value of each of the letters so that the equation is true.

Week 2. Found problem proposed by Alex Frentz.

You have 3000 gallons of water at point A on the north side of the desert. Your friends at point B on the south side of the desert want the water, but point B is 1000 miles away. You do have a camel, however. The camel can carry up to 1000 gallons of water at a time. The problem is, for every mile the camel walks, it *drinks* one gallon of water. How much water can you get to point B?

Week 3. Found problem proposed by Matthew McMullen.

A nine-digit number, N, contains each of the digits from 1 through 9. For $k = 1, 2, \ldots 9$, the number formed by the first k digits of N is divisible by k. Find N.

Week 4. Original problem proposed by Greg Oman.

Show that for any odd prime p there is a unique positive integer n such that n(p+n) is a perfect square.

Week 5. Proposed by Matthew McMullen.

Down's syndrome is present in roughly 1 in 900 births. Amniocentesis is a medical procedure that can be used to test for Down's syndrome in a fetus. This test is 99.5% accurate. A pregnant woman decides to get an amniocentesis, and her fetus tests positive for Down's syndrome. What is the probability that her baby actually has Down's syndrome?

Week 6. Proposed by Matthew McMullen.

The *hailstone function* is a function from the integers to the integers defined as follows: if the input is even, divide by 2; if the input is odd, multiply by 3 and add 1. A famous unsolved conjecture is that every positive integer will eventually iterate to 1 under this function. For example,

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1.$$

(a) What happens if you iterate -17 with the hailstone function?

(b) Of all the positive integers from 1 to 120, which takes longest to iterate to 1? How many iterations are needed for this number? (**Hint:** A computer program will help here!)

Week 7. Proposed by Matthew McMullen.

The Witch of Agnesi (named for the mathematician Maria Agnesi) is any curve of the form

$$y = \frac{8a^3}{x^2 + 4a^2},$$

where a > 0.

(a) Show that the area between the Witch and the x-axis is $4\pi a^2$.

(b) Show that the volume of revolution of the Witch about the x-axis is $4\pi^2 a^3$.

(c) Is the surface area of revolution of the Witch about the x-axis finite? Explain.

Week 8. Proposed by Matthew McMullen.

(a) Show that if a triangle has sides of length 5, 7, and 8, then one of its angles measures 60° .

(b) How many non-similar triangles with sides of integer length and an angle of 60° can you find?

Week 9. Proposed by Matthew McMullen.

(a) Let M be an invertible square matrix, and let $\lambda \neq 0$. If $M^2 = \lambda M$, find M.

(b) Let $M = \begin{pmatrix} a & -2008 \\ b & c \end{pmatrix}$, where a, b, and c are integers. Find the smallest positive value of b such that $M^2 = \mathbf{0}$, where $\mathbf{0}$ denotes the 2 × 2 zero matrix.

(c) Find a matrix M of the form $M = \begin{pmatrix} a & -2008 \\ b & c \end{pmatrix}$, where a, b, and c are *non-zero* integers and $M^2 = 2M$.