
Solutions to Coffee Hour Problems
(prepared by Matthew McMullen)

Otterbein College

Autumn 2007

Week 2. Proposed by Matthew McMullen.

Describe the nth term in the sequence

1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, . . .

and find the next four terms.

Solution: The nth term in the sequence is the smallest positive integer
divisible by 1, 2, . . . , n. Since 11 and 10 are relatively prime, the eleventh
term is 2520(11) = 27720. Since 27720 is divisible by 12, the twelfth term
is also 27720. Since 12 and 13 are relatively prime, the thirteenth term
is 27720(13) = 360360; and since 14 divides this number, this is also the
fourteenth term. (Bonus factoid: 232792560 is the smallest whole number
divisible by the first twenty positive integers!)

(Solved by James Orr and Sean Poncinie.)

Week 3. Classical problem proposed by Dave Stucki.

The case of the missing square. See [1] for details.

Solution: Magic. Just kidding! See [1]. (Solved by Sean Poncinie.)
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Week 4. 1966 International Mathematics Olympiad problem proposed by
Zengxiang Tong.

Prove that, for all positive integers n, and all valid x,

1
sin 2x

+
1

sin 4x
+ · · ·+ 1

sin 2nx
= cot x− cot 2nx.

Solution: We will first show
1

sin(2ix)
= cot(2i−1x)− cot(2ix), (1)

for all positive integers i and all valid x. To see this, let i be any positive
integer. By multiplying through by sin(2ix), (1) is equivalent to

1 = sin(2ix) · cos(2i−1x)
sin(2i−1x)

− cos(2ix). (2)

By the double angle formulas (and some algebra), we have

R.H.S. = 2 sin(2i−1x) cos(2i−1x) · cos(2i−1x)
sin(2i−1x)

− (2 cos2(2i−1x)− 1)

= 2 cos2(2i−1x)− 2 cos2(2i−1x) + 1
= 1.

This shows (2); and hence, we have proven (1).
Now we are ready to solve our problem by induction. When n = 1 our

problem is equivalent to (1) when i = 1. For the inductive step, we assume

1
sin 2x

+
1

sin 4x
+ · · ·+ 1

sin 2kx
= cot x− cot 2kx, (3)

for some positive integer k, to prove

1
sin 2x

+
1

sin 4x
+ · · ·+ 1

sin 2kx
+

1
sin 2k+1x

= cot x− cot 2k+1x. (4)

Using the inductive hypothesis, (3), this is equivalent to

cot x− cot 2kx +
1

sin 2k+1x
= cot x− cot 2k+1x.

By rearranging this is equivalent to

1
sin(2k+1x)

= cot(2kx)− cot(2k+1x),

which is (1) when i = k + 1.
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This proves (4); and, by induction, our problem is solved.

(Solved by James Orr and Adam Wolfe.)

Week 5. Proposed by Zengxiang Tong.

Find
2007∑
n=1

52008

25n + 52008
.

Solution: By dividing the numerator and denominator by 52008 = 251004

and changing the indices, we see that

2007∑
n=1

52008

25n + 52008
=

2007∑
n=1

1
25n−1004 + 1

=
1003∑

n=−1003

1
25n + 1

. (5)

Next, notice that, for positive integers k,

1
25−k + 1

+
1

25k + 1
=

25k

1 + 25k
+

1
25k + 1

=
25k + 1
25k + 1

= 1.

Therefore, we may pair off the first term of summation (5) with the last
term, the second term with the next to last term, the third term with the
third to last term, etc., to see that

1003∑
n=−1003

1
25n + 1

=
1003︷ ︸︸ ︷

1 + 1 + · · ·+ 1 +
1

250 + 1

=
2007

2
.

(Solved by Matthew McMullen.)
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Week 6. Classical problem proposed by Tom James.

Show that if there are six people in a room, then there are three people that
either mutually know each other or mutually are strangers to each other.

Solution: This is a classic result in graph theory; or, more specifically,
Ramsey Theory. For positive integers n and m, let R(n, m) denote the
minimum number of people that are needed to ensure that either n people
mutually know each other or m people mutually are strangers to each other.
We are asked to show that R(3, 3) ≤ 6. See [2] for more details and for a
proof of the stronger result R(3, 3) = 6. (Surprisingly, R(5, 5) is unknown;
the best current result, according to the Wikipedia article, is 43 ≤ R(5, 5) ≤
49.)

(No correct solutions received.)

Week 7. Variation on a 1989 Putnam Competition problem proposed by
Matthew McMullen.

Describe the set of points inside a square of area one that are closer to the
center of the square than to any edge of the square. (Bonus: Find the area
of this set.)

Solution: First position the square in the xy-plane so that it is centered
about the origin and one of its edges is parallel to the x-axis. Let R be the
region bounded by the lines y = ±x and y = 1/2. Then, for all points (x, y)
in R, the distance to the center of our square is

√
x2 + y2 and the distance

to the (nearest) edge is 1/2− y. Thus, in R, a point is closer to the center
of the square than to any edge only if

√
x2 + y2 < 1/2− y; or, equivalently

y < 1/4− x2. We may use the same method for the other three sections of
the square to describe the entire region in question.

To find the area of this region, we compute

4
∫ a

−a
(1/4− x2 − x) dx = 8

∫ a

0
(1/4− x2 − x) dx,

where a = (
√

2 − 1)/2 is the x-coordinate of the intersection point in the
first quadrant of the curves y = x and y = 1/4−x2. After much simplifying
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this area is found to be

4
√

2− 5
3

≈ 0.21895.

[Solved by Dave Stucki (with bonus) and James Orr (without bonus).]

Week 8. Proposed by Duane Buck.

Fix h, w > 0 and the point (x2, y2). Let R denote the rectangle centered
at (x2, y2) with width w and height h. Let (x1, y1) be any point outside R,
and fix l > 0 and 0 < θ < π/2. Find coordinates p, q, and r, where p lies
on R and on the line segment connecting (x1, y1) and (x2, y2); and p, q and
r make up the head of the arrow pointing from (x1, y1) to p with fan-out θ
ending l from the tip.

Solution: We will solve the problem for (x2, y2) = (0, 0) and describe how
to find the general solution from this result. Let L1 denote the line y = hx/w
and let L2 denote the line y = −hx/w. Then L1 and L2 contain the diagonals
of R and divide the plane into four regions. For (x1, y1) in the region below
L2 and above L1; or, equivalently, for hx1/w ≤ y1 ≤ −hx1/w, we have that
p lies on the left-hand boundary of R and on the line containing (x1, y1) and
the origin; namely, y = y1x/x1. Thus,

p =
(
−w

2
,−wy1

2x1

)
.

Similarly, for (x1, y1) in the region below L1 and above L2, we have

p =
(

w

2
,
wy1

2x1

)
;

for (x1, y1) in the region above both L1 and L2, we have

p =
(

hx1

2y1
,
h

2

)
;

and, for (x1, y1) in the region below both L1 and L2, we have

p =
(
−hx1

2y1
,−h

2

)
.
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Our next goal is to find coordinates q and r. First define ϕ = arctan(y1/x1).
Let px and py denote the x- and y-coordinates of p, respectively. Suppose
x1 < x2. Then we use right-angle trigonometry to see that

q = (px ± l cos(ϕ− θ), py ± l sin(ϕ− θ))

and
r = (px ± l cos(ϕ + θ), py ± l sin(ϕ + θ)),

where the signs are chosen so that the arrow points in the correct direction.1

For x1 > x2, these values switch. For x1 = x2, we have p = (0,±h/2),
r = (l sin θ, py ± l cos θ) and q = (−l sin θ, py ± l cos θ).

To solve the general case, we would first translate our points −x2 units
horizontally and −y2 units vertically [so that (x1, y1) would become (x1 −
x2, y1 − y2) and (x2, y2) would become (0, 0)]; then solve for p, q, and r as
above; and then translate back to our original position.

(No correct solutions received.)

Week 9. Problem from Math Horizons proposed by Zengxiang Tong.

Show that ∫ 1

0

4x3
(
1 + x4(2006)

)
(1 + x4)2008

dx =
1

2007
.

Solution: Let I denote the integral in question. Put u = 1 + x4 and
w = 1− 1/u. Then du = 4x3 dx and dw = 1/u2 du. Thus,

I =
∫ 2

1

1 + (u− 1)2006

u2008
du

=
∫ 2

1
u−2008 du +

∫ 2

1

(
1− 1

u

)2006

· 1
u2

du

=
u−2007

−2007

∣∣∣∣∣
2

1

+
∫ 1/2

0
w2006 dw

1We are hand-waving here. The correct sign would likely depend on some relationship
between either θ and ϕ or x1 and x2 (or both), which the reader is encouraged to find.
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=
u−2007

−2007

∣∣∣∣∣
2

1

+
w2007

2007

∣∣∣∣∣
1/2

0

=
1

2007
.

(Solved by Matthew McMullen.)
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