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Approach

David E. Rumelhart

The Architecture of Mind : A Connectionist

Cognitive science has a long -standing and important relationship to
the computer . The computer has provided a tool whereby we have
been able to express our theories of mental activity ; it has been a

valuable source of metaphors through which we have come to
understand and appreciate how mental activities might arise out of

the operations of simple - component processing elements .

I recall vividly a class I taught some fifteen years ago in which I

outlined the then-current view of the cognitive system. A particularly

skeptical student challenged my account with its reliance on concepts
drawn from computer science and artificial intelligence with the

question of whether I thought my theories would be different if it
had happened that our computers were parallel instead of serial. My
response, as I recall, was to concede that our theories might very well
be different , but to argue that that wasn't a bad thing . I pointed out
that the inspiration for our theories and our understanding of abstract

phenomena always is based on our experience with the technology of
the time . I pointed out that Aristotle had a wax tablet theory of
memory , that Leibniz saw the universe as clockworks , that Freud

used a hydraulic model of libido flowing through the system , and that

the telephone-switchboard model of intelligence had played an im -
portant role as well . The theories posited by those of previous gen-
erations had, I suggested, been useful in spite of the fact that they
were based on the metaphors of their time . Therefore , I argued, it
was natural that in our generation - the generation of the serial

computer - we should draw our insights from analogies with the
most advanced technological developments of our time . I don 't now

remember whether my response satisfied the student , but I have no
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acteristics are the same. This is a very misleading analogy . It is true for

computers because they are all essentially the same. Whether we
make them out of vacuum tubes or transistors , and whether we use an

IBM or an Apple computer , we are using computers of the same

general design . When we look at essentially different architecture , we

see that the architecture makes a good deal of difference . It is the

architecture that determines which kinds of algorithms are most easily

carried out on the machine in question . It is the architecture of the

machine that determines the essential nature of the program itself . It

is thus reasonable that we should begin by asking what we know

about the architecture of the brain and how it might shape the algo -

rithms underlying biological intelligence and human mental life .

The basic strategy of the connectionist approach is to take as its

fundamental processing unit something close to an abstract neuron .

We imagine that computation is carried out through simple inter -

actions among such processing units . Essentially the idea is that these

processing elements communicate by sending numbers along the lines

that connect the processing elements . This identification already

provides some interesting constraints on the kinds of algorithms that

might underlie human intelligence .

The operations in our models then can best be characterized as

" neurally inspired ." How does the replacement of the computer

metaphor with the brain metaphor as model of mind affect our

thinking ? This change in orientation leads us to a number of consid -

erations that further inform and constrain our model - building efforts .

Perhaps the most crucial of these is time . Neurons are remarkably

slow relative to components in modern computers . Neurons operate

in the time scale of milliseconds , whereas computer components

operate in the time scale of nanoseconds - a factor of 106 faster . This

means that human processes that take on the order of a second or less

can involve only a hundred or so time steps. Because most of the

processes we have studied - perception , memory retrieval , speech

processing , sentence comprehension , and the like - take about a

second or so, it makes sense to impose what Feldman (1985 ) calls

the " 1 OO- step program " constraint . That is, we seek explanations

for these mental phenomena that do not require more than about a

hundred elementary sequential operations . Given that the processes

we seek to characterize are often quite complex and may involve
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consideration of large numbers of simultaneous constraints , our algo -

rithms must involve considerable parallelism . Thus although a serial

computer could be created out of the kinds of components repre -

sented by our units , such an implementation would surely violate the

100- step program constraint for any but the simplest processes. Some

might argue that although parallelism is obviously present in much of

human information processing , this fact alone need not greatly mod -

ify our world view . This is unlikely . The speed of components is a

critical design constraint . Although the brain has slow components , it

has very many of them . The human brain contains billions of such

processing elements . Rather than organize computation with many ,

many serial steps, as we do with systems whose steps are very fast, the

brain must deploy many , many processing elements cooperatively and

in parallel to carry out its activities . These design characteristics ,

among others , lead , I believe , to a general organization of computing
that is fundamentally different from what we are used to .

A further consideration differentiates our models from those

inspired by the computer metaphor - that is, the constraint that all

the knowledge is in the connections. From conventional programmable

computers we are used to thinking of knowledge as being stored in

the state of certain units in the system . In our systems we assume that

only very short - term storage can occur in the states of units ; long -

term storage takes place in the connections among units . Indeed it is

the connections - or perhaps the rules for forming them through

experience - that primarily differentiate one model from another .

This is a profound difference between our approach and other more

conventional approaches , for it means that almost all knowledge is
implicit in the structure of the device that carries out the task rather

than explicit in the states of units themselves . Knowledge is not di -

rectly accessible to interpretation by some separate processor , but it is

built into the processor itself and directly determines the course of

processing . It is acquired through tuning of connections as these are

used in processing , rather than fornlulated and stored as declarative
facts .

These and other neurally inspired classes of working assumptions

have been one important source of assumptions underlying the con -

nectionist program of research . These have not been the only con -
siderations . A second class of constraints arises from our beliefs about
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the nature of human information processing considered at a more

abstract, computational level of analysis. We see the kinds of phe-
nomena we have been studying as products of a kind of constraint-

satisfaction procedure in which a very large number of constraints act
simultaneously to produce the behavior . Thus we see most behavior
not as the product of a single, separate component of the cognitive
system but as the product of large set of interacting components, each
mutually constraining the others and contributing in its own way to
the globally observable behavior of the system. It is very difficult to
use serial algorithms to implement such a conception but very natural
to use highly parallel ones. These problems can often be characterized
as best-match or optimization problems. As Minsky and Papert (1969)
have pointed out , it is very difficult to solve best-match problems
serially. This is precisely the kind of problem , however , that is readily
implemented using highly parallel algorithms of the kind we have
been studying .

The use of brain-style computational systems, then , offers not

only a hope that we can characterize how brains actually carry out
certain information - processing tasks but also solutions to compu -

tational problems that seem difficult to solve in more traditional
computational frameworks . It is here where the ultimate value of
connectionist systems must be evaluated .

In this chapter I begin with a somewhat more formal sketch of

the computational framework of connectionist models. I then follow
with a general discussion of the kinds of computational problems that
connectionist models seem best suited for . Finally , I will briefly re-

view the state of the art in connectionist modeling .

The Connectionist Framework

There are seven major components of any connectionist system :

. a set of processing units;

. a state of activation defined over the processing units ;

. an output function for each unit that maps its state of activation into an
output ;

. a pattern of connectivity among units ;

. an activation rule for combining the inputs impinging on a unit with its

current state to produce a new level of activation for the unit ;
. a learning rule whereby patterns of connectivity are modified by experience ;
. an environment within which the system must operate .
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Figure 8.1
The basic components of a parallel distributed processing system.

Figure 8.1 illustrates the basic aspects of these systems. There is a set

of processing units, generally indicated by circles in my diagrams; at
each point in time each unit ui has an activation value , denoted in the

diagram as ai(t); this activation value is passed through a function Ji to
produce an output value Oi(t) . This output value can be seen as pass-
ing through a set of unidirectional connections (indicated by lines or
arrows in the diagrams ) to other units in the system . There is asso-

ciated with each connection a real number , usually called the weight

or strength of the connection , designated wi}, which determines the

affect that the first unit has on the second . All of the inputs must then

be combined , and the combined inputs to a unit (usually designated
the net input to the unit ) along with its current activation value de-

termine its new activation value via a function F . These systems are

viewed as being plastic in the sense that the pattern of inter -

ak (I )
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connections is not fixed for all time ; rather the weights can undergo
modification as a function of experience. In this way the system can
evolve. What a unit represents can change with experience, and the
system can come to perform in substantially different ways.

A Set of Processing Units Any connectionist system begins with a

set of processing units . Specifying the set of processing units and what

they represent is typically the first stage of specifying a connectionist

model . In some systems these units may represent particular con -

ceptual obj ects such as features , letters , words , or concepts ; in others

they are simply abstract elements over which meaningful patterns can
be defined. When we speak of a distributed representation, we mean
one in which the units represent small , featurelike entities we call

microfeatures. In this case it is the pattern as a whole that is the mean-
ingful level of analysis . This should be contrasted to a one-unit -

one-concept or localist representational system in which single units

represent entire concepts or other large meaningful entities .

All of the processing of a connectionist system is carried out by

these units. There is no executive or other overseer. There are only

relatively simple units, each doing its own relatively simple job . A
unit 's job is simply to receive input from its neighbors and, as a
function of the inputs it receives , to compute an output value , which

it sends to its neighbors. The system is inherently parallel in that many
units can carry out their computations at the same time .

Within any system we are modeling , it is useful to characterize
three types of units : input , output , and hidden units . Input units receive

inputs from sources external to the system under study . These inputs

may be either sensory inputs or inputs from other parts of the pro -

cessing system in which the model is embedded . The output units

send signals out of the system. They may either directly affect motoric
systems or simply influence other systems external to the ones we are
modeling . The hidden units are those whose only inputs and outputs
are within the system we are modeling . They are not "visible" to
outside systems .

The State of Activation In addition to the set of units we need a

representation of the state of the system at time t . This is primarily

specified by a vector a ( t ) , representing the pattern of activation over
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connectivity among the processing units .

The Pattern of Connectivity U nits are connected to one another .

It is this pattern of connectivity that constitutes what the system

knows and determines how it will respond to any arbitrary input .

Specifying the processing system and the knowledge encoded therein

is, in a connectionist model , a matter of specifying this pattern of

the set of processing units . Each element of the vector stands for the

activation of one of the units . It is the pattern of activation over the

set of units that captures what the system is representing at any time .

It is useful to see processing in the system as the evolution , through

time , of a pattern of activity over the set of units .

Different models make different assumptions about the activation

values a unit is allowed to take on . Activation values may be con -

tinuous or discrete . If they are continuous , they may be unbounded

or bounded . If they are discrete , they may take binary values or any of

a small set of values . Thus in some models units are continuous and

may take on any real number as an activation value . In other cases

they may take on any real value between some minimum and max -

imum such as , for example , the interval [0 , 1 ] . When activation values

are restricted to discrete values , they most often are binary . Some -

times they are restricted to the values 0 and 1 , where 1 is usually

taken to mean that the unit is active and 0 is taken to mean that it is
. .
InactIve .

Output of the Units Units interact by transmitting signals to their

neighbors . The strength of their signals and therefore the degree to

which they affect their neighbors are determined by their degree of

activation . Associated with each unit ui is an output functionJi ( ai ( t ) ) ,

which maps the current state of activation to an output signal Oi ( t ) . In

some of our models the output level is exactly equal to the activation

level of the unit . In this case f is the identity function f ( x ) = = x .

Sometimes f is some sort of threshold function so that a unit has no

affect on another unit unless its activation exceeds a certain value .

Sometimes the function f is assumed to be a stochastic function in

which the output of the unit depends probabilistically on its activa -

tion values .
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In many cases we assume that each unit provides an additive
contribution to the input of the units to which it is connected . In

such cases the total input to the unit is simply the weighted sum of

the separate inputs from each of the individual units . That is, the

inputs from all of the incoming units are simply multiplied by a
weight and summed to get the overall input to that unit . In this case
the total pattern of connectivity can be represented by merely speci-
fying the weights for each of the connections in the system. A pos-
itive weight represents an excitatory input , and a negative weight
represents an inhibitory input . It is often convenient to represent such
a pattern of connectivity by a weight matrix W in which the entry wi}
represents the strength and sense of the connection from unit Uj to

unit ui. The weight wi} is a positive number if unit Uj excites unit ui; it
is a negative number if unit Uj inhibits unit ui; and it is 0 if unit Uj has

no direct connection to unit ui. The absolute value of wi} specifies the
strength of the connection.

The pattern of connectivity is very important . It is this pattern

that determines what each unit represents . One important issue that

may determine both how much information can be stored and how

much serial processing the network must perform is the fan -in and fan -
out of a unit . The fan - in is the number of elements that either excite

or inhibit a given unit . The fan - out of a unit is the number of units

affected directly by a unit . It is useful to note that in brains these
numbers are relatively large. Fan-in and fan-out range as high as
100,000 in some parts of the brain . It seems likely that this large
fan - in and fan - out allows for a kind of operation that is less like a
fixed circuit and more statistical in character .

Activation Rule We also need a rule whereby the inputs impinging

on a particular unit are combined with one another and with the

current state of the unit to produce a new state of activation . We

need function F , which takes a(t) and the net inputs , neti ==

)=:j WijO} ( t) , and produces a new state of activation . In the simplest
cases, when F is the identity function , we can write a( t + 1) ==

Wo (t) == net ( t) . Sometimes F is a threshold function so that the net

input must exceed some value before contributing to the new state of
activation . Often the new state of activation depends on the old one

as well as the current input . The function F itself is what we call the



activation rule . Usually the function is assumed to be deterministic .

Thus , for example , if a threshold is involved it may be that ai( t) == 1 if

the total input exceeds some threshold value and equals 0 otherwise .
Other times it is assumed that F is stochastic . Sometimes activations

are assumed to decay slowly with time so that even with no external

input the activation of a unit will simply decay and not go directly to
zero . Whenever ai( t) is assumed to take on continuous values , it is

common to assume that F is a kind of sigmoid function . In this case
an individual unit can saturate and reach a minimum or maximum
value of activation .
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Very little work has been done on (1) and (2). To a first order of

approximation , however , (1) and (2) can be considered a special case
of (3). Whenever we change the strength of connection away from
zero to some positive or negative value, it has the same effect as

growing a new connection . Whenever we change the strength of a
connection to zero, that has the same effect as losing an existing
connection . Thus we have concentrated on rules whereby strengths of
connections are modified through experience.

Virtually all learning rules for models of this type can be con-
sidered a variant of the Hebbian learning rule suggested by Hebb
(1949) in his classic book Organization of Behavior. Hebb 's basic idea is

this: If a unit ui receives an input from another unit Uj, then, if both
are highly active, the weight wi} from Uj to Ui should be strengthened.
This idea has been extended and modified so that it can be more

generally stated as

tJWij' == g(a;(t) , t;(t) )h(oj(t) , wij) ,

where ti(t) is a kind of teaching input to Ui. Simply stated, this equation
says that the change in the connection from Uj to u,' is given by the

Modifying Patterns of Connectivity as a Function of Experience

Changing the processing or knowledge structure in a connectionist

system involves modifying the patterns of interconnectivity . In prin -
ciple this can involve three kinds of modifications :

1. development of new connections ;
2. loss of existing connections ;
3. modification of the strengths of connections that already exist.



The Architecture of Mind 217

product of a function g( ) of the activation of Ui and its teaching input
4 and another function h( ) of the output value of Uj and the con-
nection strength Wile In the simplest versions of Hebbian learning ,
there is no teacher and the functions g and h are simply proportional
to their first arguments . Thus we have

l5Wij == eaiOj,

where e is the constant of proportionality representing the learning
rate. Another common variation is a rule in which h(Oj(t), wi}) == OJ(t)
and g(ai(t), ti(t)) == e(ti(t) - ai(t)). This is often called the Widrow-
Hoff, because it was originally formulated by Widrow and Hoff

(1960 ) , or the delta rule, because the amount of learning is propor -

tional to the difference (or delta) between the actual activation
achieved and the target activation provided by a teacher. In this case
we have

C>Wij = e(ti(t) - ai(t))Oj(t) .

This is a generalization of the perceptron learning rule for which the
famous perception convergence theorem has been proved . Still another
variation has

<5Wij == eai(t)(Oi(t) - Wij).

This is a rule employed by Grossberg (1976) and others in the study
of competitive learning. In this case usually only the units with the

strongest activation values are allowed to learn .

Representation of the Environment I t is crucial in the develop -

ment of any model to have a clear representation of the environment

in which this model is to exist . In connectionist models we represent

the environment as a time - varying stochastic function over the space

of input patterns . That is, we imagine that at any point in time there

is some probability that any of the possible set of input patterns is
impinging on the input units . This probability function may in general
depend on the history of inputs to the system as well as outputs of the
system . In practice most connectionist models involve a much simpler

characterization of the environment . Typically the environment is
characterized by a stable probability distribution over the set of pos-

sible input patterns independent of past inputs and past responses of
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the system . In this case we can imagine listing the set of possible in -

puts to the system and numbering them from 1 to M . The environ -

ment is then characterized by a set of probabilities Pi for i = = 1 , . . . , M .

Because each input pattern can be considered a vector , it is sometimes

useful to characterize those patterns with nonzero probabilities as

constituting orthogonal or linearly independent sets of vectors .

To summarize , the connectionist framework consists not only of

a formal language but also a perspective on our models . Other qual -

itative and quantitative considerations arising from our understanding

of brain processing and of human behavior combine with the formal

system to form what might be viewed as an aesthetic for our model -

building enterprises .

Computational Features of Connectionist Models

In addition to the fact that connectionist systems are capable of

exploiting parallelism in computation and mimicking brain - style

computation , connectionist systems are important because they pro -

vide good solutions to a number of very difficult computational

problems that seem to arise often in models of cognition . In particular

they are good at solving constraint - satisfaction problems , implement -

ing content - addressable memory - storage systems , and implement -

ing best match ; they allow for the automatic implementation of

similarity - based generalization ; they exhibit graceful degradation with

damage or infomlation overload ; and there are simple , general

mechanisms for learning that allow connectionist systems to adapt to

their environments .

Constraint Satisfaction Many cognitive - science problems are use -

fully conceptualized as constraint - satisfaction problems in which a

solution is given through the satisfaction of a very large number of

mutually interacting constraints . The problem is to devise a compu -

tational algorithm that is capable of efficiently implementing such a

system . Connectionist systems are ideal for implementing stIch a

constraint - satisfaction system , and the trick for getting connectionist

networks to solve difficult problems is often to cast the problem as a

constraint - satisfaction problem . In this case we conceptualize the

connectionist network as a constraint network in which each unit rep -

resents a hypothesis of some sort ( for example , that a certain semantic
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feature , visual feature , or acoustic feature is present in the input ) and

in which each connection represents constraints among the hypoth -

eses . Thus , for example , if feature B is expected to be present when -

ever feature A is present , there should be a positive connection from

the unit corresponding to the hypothesis that A is present to the unit

representing the hypothesis that B is present . Similarly if there is a

constraint that whenever A is present B is expected not to be present ,

there should be a negative connection from A to B . If the constraints

are weak , the weights should be small . If the constraints are strong ,

then the weights should be large . Similarly the inputs to such a net -

work can also be thought of as constraints . A positive input to a par -

ticular unit means that there is evidence from the outside that the

relevant feature is present . A negative input means that there is evi -

dence from the outside that the feature is not present . The stronger

the input , the greater the evidence . If such a network is allowed to

run , it will eventually settle into a locally optimal state in which as

many as possible of the constraints are satisfied , with priority given to

the strongest constraints . ( Actually , these systems will find a locally

best solution to this constraint satisfaction problem . Global optima are

more difficult to find . ) The procedure whereby such a system settles

into such a state is called relaxation . We speak of the system relaxing to

a solution . Thus a large class of connectionist models contains con -

straint satisfaction models that settle on locally optimal solutions

through the process of relaxation .

Figure 8 . 2 shows an example of a simple 16 - unit constraint net -

work . Each unit in the network represents a hypothesis concerning a

vertex in a line drawing of a Necker cube . The network consists of

two interconnected subnetworks - one corresponding to each of the

two global interpretations of the Necker cube . Each unit in each

network is assumed to receive input from the region of the input

figure - the cube - corresponding to its location in the network . Each

unit in figure 8 . 2 is labeled with a three - letter sequence indicating

whether its vertex is hypothesized to be front or back ( F or B ) , upper

or lower ( 0 or L ) , and right or left ( R or L ) . Thus , for example , the

lower - left unit of each subnetwork is assumed to receive input from

the lower - left vertex of the input figure . The unit in the left network

represents the hypothesis that it is receiving input from a lower - left

vertex in the front surface of the cube ( and is thus labeled FLL ) ,
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Figure 8 .2
A simple network
Necker cube .

some constraints involved in perceiving a

whereas the one in the right subnetwork represents the hypothesis

that it is receiving input from a lower - left vertex in the back surface

(BLL ) . Because there is a constraint that each vertex has a single

interpretation , these two units are connected by a strong negative

connection . Because the interpretation of any given vertex is con -

strained by the interpretations of its neighbors , each unit in a sub-

network is connected positively with each of its neighbors within the

network . Finally there is the constraint that there can be only one

vertex of a single kind (for example , there can be only one lower - left

vertex in the front plane FLL ) . There is a strong negative connection

between units representing the same label in each subnetwork . Thus

each unit has three neighbors connected positively , two competitors

connected negatively , and one positive input from the stimulus . For

purposes of this example the strengths of connections have been



arranged so that two negative inputs exactly balance three positive
inputs. Further it is assumed that each unit receives an excitatory
input from the ambiguous stimulus pattern and that each of these
excitatory influences is relatively small. Thus if all three of a unit 's
neighbors are on and both of its competitors are on, these effects
would entirely cancel out one another; and if there were a small input
from the outside, the unit would have a tendency to come on. On
the other hand if fewer than three of its neighbors were on and both
of its competitors were on, the unit would have a tendency to turn
off , even with an excitatory input from the stimulus pattern .

In the preceding paragraph I focused on the individual units of
the networks . It is often useful to focus not on the units, however , but

on entire states of the network . In the case of binary (on-off or 0- 1)
units, there is a total of 216 possible states in which this system could
reside. That is, in principle each of the 16 units could have either
value 0 or 1. In the case of continuous units, in which each unit can

take on any value between 0 and 1, the system can in principle take
on any of an infinite number of states. Yet because of the constraints
built into the network , there are only a few of those states in which
the system will settle. To see this, consider the case in which the units
are updated asynchronously, one at a time . During each time slice
one of the units is chosen to update. If its net input exceeds 0, its
value will be pushed toward 1; otherwise its value will be pushed
toward O.

Imagine that the system starts with all units off . A unit is then
chosen at random to be updated. Because it is receiving a slight pos-
itive input from the stimulus and no other inputs, it will be given a
positive activation value. Then another unit is chosen to update.
Unless it is in direct competition with the first unit , it too will be
turned on . Eventually a coalition of neighboring units will be turned
on. These units will tend to turn on more of their neighbors in the
same subnetwork and turn off their competitors in the other subnet-
work . The system will (almost always) end up in a situation in which
all of the units in one subnetwork are fully activated and none of the
units in the other subnetwork is activated. That is, the system will end
up interpreting the Necker cube as either facing left or facing right .
Whenever the system gets into a state and stays there, the state is
called a stable state or a fixed point of the network . The constraints

The Architecture of Mind 221
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implicit in the pattern of connections among the units detemline the

set of possible stable states of the system and therefore the set of pos -

sible interpretations of the inputs .

Hopfield ( 1982 ) has shown that it is possible to give a general

account of the behavior of systems such as this one ( with symmetric

weights and asynchronous updates ) . In particular Hopfield has shown

that such systems can be conceptualized as minimizing a global mea -

sure , which he calls the energy of the system , through a method of

gradient descent or , equivalently , maximizing the constraints satisfied

through a method of hill climbing . In particular Hopfield has shown

that the system operates in such a way as to always move from a state

that satisfies fewer constraints to a state that satisfies more constraints ,

where the measure of constraint satisfaction is given by

G ( t ) = = = } = : } = : Wijai ( t ) aj ( t ) + } = : inputi ( t ) ai ( t ) .
. . .

I ) I

Essentially the equation says that the overall goodness of fit is given

by the sum of the degrees to which each pair of units contributes to

the goodness plus the degree to which the units satisfy the input

constraints . The contribution of a pair of units is given by the product

of their activation values and the weights connecting them . Thus if

the weight is positive , each unit wants to be as active as possible -

that is , the activation values for these two units should be pushed

toward 1 . If the weight is negative , then at least one of the units

should be 0 to maximize the pairwise goodness . Similarly if the input

constraint for a given unit is positive , then its contribution to the total

goodness of fit is maximized by being the activation of that unit

toward its maximal value . If it is negative , the activation value should

be decreased toward O . Of course the constraints will generally not be

totally consistent . Sometimes a given unit may have to be turned on

to increase the function in some ways yet decrease it in other ways .

The point is that it is the sum of all of these individual contributions

that the system seeks to maximize . Thus for every state of the system

- every possible pattern of activation over the units - the pattern

of inputs and the connectivity matrix W determine a value of the

goodness - of - fit function . The system processes its input by moving

upward from state to adjacent state until it reaches a state of max -

imum goodness . When it reaches such a stable state or fixed point , it
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will stay in that state and it can be said to have " settled " on a solution

to the constraint-satisfaction problem or alternatively , in our present
case, " settled into an interpretation " of the input .

It is important to see then that entirely local computational
operations, in which each unit adjusts its activation up or down on
the basis of its net input , serve to allow the network to converge

toward states that maximize a global measure of goodness or degree
of constraint satisfaction. Hopfield ' s main contribution to the present
analysis was to point out this basic fact about the behavior of net-
works with symmetrical connections and asynchronous update of

. .

actIvatIons .

To summarize, there is a large subset of connectionist models
that can be considered constraint - satisfaction models . These networks

can be described as carrying out their information processing by
climbing into states of maximal satisfaction of the constraints implicit
in the network . A very useful concept that arises from this way of

viewing these networks is that we can describe that behavior of these

networks not only in terms of the behavior of individual units but
also in terms of properties of the network itself . A primary concept

for understanding these network properties is the goodness-of-.fit land-
scape over which the system moves . Once we have correctly described

this landscape, we have described the operational properties of the
system- it will process information by moving uphill toward good-
ness maxima. The particular maximum that the system will find is
determined by where the system starts and by the distortions of the
space induced by the input . One of the very important descriptors of

a goodness landscape is the set of maxima that the system can find , the

size of the region that feeds into each maximum , and the height
of the maximum itself. The states themselves correspond to possible

interpretations , the peaks in the space correspond to the best inter -
pretations, the extent of the foothills or skirts surrounding a particular
peak determines the likelihood of finding the peak, and the height of
the peak corresponds to the degree to which the constraints of the
network are actually met or alternatively to the goodness of the

interpretation associated with the corresponding state.

Interactive Processing One of the difficult problems in cognitive

science is to build systems that are capable of allowing a large number
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of knowledge sources to usefully interact in the solution of a prob -

lem . Thus in language processing we would want syntactic , phono -

logical , semantic , and pragmatic knowledge sources all to interact in

the construction of the meaning of an input . Reddy and his col -

leagues (1973 ) have had some success in the case of speech perception

with the Hearsay system because they were working in the highly

structured domain of language . Less structured domains have proved

very difficult to organize . Connectionist models , conceptualized as

constraint - satisfaction networks , are ideally suited for the blending of

multiple - knowledge sources . Each knowledge type is simply another

constraint , and the system will , in parallel , find those figurations of

values that best satisfy all of the constraints from all of the knowledge

sources . The uniformity of representation and the common currency

of interaction (activation values ) make connectionist systems espe -

cially powerful for this domain .

Rapid Pattern Matching , Best - Match Search , Content - Addressable

Memory Rapid pattern matching , best - match search , and content -

addressable memory are all variants on the general best - match prob -

lem (compare Minsky and Papert 1969 ) . Best - match problems are

especially difficult for serial computational algorithms (it involves ex -

haustive search ) , but as we have just indicated connectionist systems

can readily be used to find the interpretation that best matches a set of

constraints . It can similarly be used to find stored data that best match

some target . In this case it is useful to imagine that the network con -

sists of two classes of units , with one class , the visible units , corre -

sponding to the content stored in the network , and the remaining ,

hidden units are used to help store the patterns . Each visible unit cor -

responds to the hypothesis that some particular feature was present in

the stored pattern . Thus we think of the content of the stored data as

consisting of collections of features . Each hidden unit corresponds to

a hypothesis concerning the configuration of features present in a stored

pattern . The hypothesis to which a particular hidden unit corresponds

is determined by the exact learning rule used to store the input and the

characteristics of the ensemble of stored patterns . Retrieval in such a

network amounts to turning on some of the visible units (a retrieval

probe ) and letting the system settle to the best interpretation of the

input . This is a kind of pattern completion . The details are not too
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important here because a variety of learning rules lead to networks

with the following important properties :

. When a previously stored (that is, familiar ) pattern enters the memory
system, it is amplified , and the system responds with a stronger version of the
input pattern . This is a kind of recognition response.
. When an unfamiliar pattern enters the memory system, it is dampened,
and the activity of the memory system is shut down . This is a kind of un-
familiarity response.
. When part of a familiar pattern is presented, the system responds by
" filling in " the missing parts. This is a kind of recall paradigm in which the
part constitutes the retrieval cue, and the filling in is a kind of memory -
reconstruction process. This is a content -addressable memory system.
. When a pattern similar to a stored pattern is presented, the system re-
sponds by distorting the input pattern toward the stored pattern . This is a
kind of assimilation response in which similar inputs are assimilated to similar
stored events.

. Finally , if a number of similar patterns have been stored, the system will
respond strongly to the central tendency of the stored patterns, even though
the central tendency itself was never stored. Thus this sort of memory system
automatically responds to prototypes even when no prototype has been
seen.

These properties correspond very closely to the characteristics of

human memory and , I believe , are exactly the kind of properties we

want in any theory of memory .

Automatic Generalization and Direct Representation of Similarity

One of the major complaints against AI programs is their " fragility ."

The programs are usually very good at what they are programmed to

do , but respond in unintelligent or odd ways when faced with novel
situations . There seem to be at least two reasons for this fragility . In

conventional symbol - processing systems similarity is indirectly repre -

sented and therefore are generally incapable of generalization , and

most AI programs are not self- modifying and cannot adapt to their

environment . In our connectionist systems on the other hand , the

content is directly represented in the pattern and similar patterns have

similar effects - therefore generalization is an automatic property of

connectionist models . It should be noted that the degree of similarity

between patterns is roughly given by the inner product of the vectors

representing the patterns . Thus the dimensions of generalization are

given by the dimensions of the representational space. Often this will
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The constraint that similar input patterns lead to similar outputs
can lead to an inability of the system to learn certain mappings from
input to output . Whenever the representation provided by the out -
side world is such that the similarity structure of the input and output
patterns is very different , a network without internal representations
(that is, a network without hidden units) will be unable to perform
the necessary mappings. A classic example of this case is the exclusive-
or ( XOR ) problem illustrated in table 8.1. Here we see that those

patterns that overlap least are supposed to generate identical output
values. This problem and many others like it cannot be performed
by networks without hidden units with which to create their own
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representation . provided

world had to suffice . Nevertheless these networks have proved useful

in a wide variety of applications . Perhaps the essential character of

such networks is that they map similar input patterns to similar output

patterns . This is what allows these networks to make reasonable

generalizations and perform reasonably on patterns that have never

before been presented . The similarity of patterns in the connectionist

system is determined by their overlap . The overlap in such networks

is determined outside the learning system itself - by whatever pro -

lead to the right generalizations . There are situations in which this

will lead to inappropriate generalizations . In such a case we must

allow the system to learn its appropriate representation . In the next

section I describe how the appropriate representation can be learned

so that the correct generalizations are automatically made .

Learning A key advantage of the connectionist systems is the fact

that simple yet powerful learning procedures can be defined that

allow the systems to adapt to their environment . It was work on the

learning aspect of these neurally inspired models that first led to an

interest in them (compare Rosenblatt , 1962 ) , and it was the demon -

stration that the learning procedures for complex networks could

never be developed that contributed to the loss of interest (compare

Minsky and Papert 1969 ) . Although the perceptron convergence procedure

and its variants have been around for some time , these learning pro -

cedures were limited to simple one - layer networks involving only

input and output units . There were no hidden units in these cases and

no internal The coding by the external
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Output Patterns

. . .

Internal

Representation
Units

. . .

Input Patterns

Figure 8 .3

A multilayer network in which input patterns are recoded by internal repre -
sentation units .

The numbers on the arrows represent the strengths of the connec-

tions among the units. The numbers written in the circles represent
the thresholds of the units . The value of + 1.5 for the threshold of the

hidden unit ensures that it will be turned on only when both input
units are on. The value 0.5 for the output unit ensures that it will

turn on only when it receives a net positive input greater than 0.5.
The weight of - 2 from the hidden unit to the output unit ensures
that the output unit will not come on when both input units are on .
Note that from the point of view of the output unit the hidden unit is

treated as simply another input unit . It is as if the input patterns
consisted of three rather than two units.
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Although our learning results do not guarantee that we can find a

solution for all solvable problems , our analyses and simulation results

have shown that as a practical matter , this error propagation scheme

leads to solutions in virtually every case. In short I believe that we

have answered Minsky and Papert 's challenge and have found a

learning result sufficiently powerful to demonstrate that their pessi-

mism about learning in multilayer machines was misplaced .

One way to view the procedure I have been describing is as

a parallel computer that , having been shown the appropriate input /

output exemplars specifying some function , programs itself to com -

actual value the units have attained and the target for those units . This

difference becomes an error signal . This error signal must then be sent

back to those units that impinged on the output . Each such unit

receives an error measure that is equal to the error in all of the units

to which it connects times the weight connecting it to the output

unit . Then , based on the error , the weights into these " second - layer "

units are modified , after which the error is passed back another layer .

This process continues until the error signal reaches the input units or

until it has been passed back for a fixed number of times . Then a new

input pattern is presented and the process repeats . Although the pro -

cedure may sound difficult , it is actually quite simple and easy to im -

plement within these nets . As shown in Rumelhart , Hinton , and

Williams 1986 , such a procedure will always change its weights in

such a way as to reduce the difference between the actual output

values and the desired output values . Moreover it can be shown that

this system will work for any network whatsoever .

Minsky and Papert (1969 , pp . 231 - 232 ) , in their pessimistic

discussion of perceptrons , discuss multilayer machines. They state that

The perceptron has shown itself worthy of study despite (and even because
ot-!) its severe limitations . It has many features that attract attention : its lin -
earity ; its intriguing learning theorem ; its clear paradigmatic simplicity as a
kind of parallel computation . There is no reason to suppose that any of these
virtues carry over to the many- layered version . Nevertheless, we consider it
to be an important research problem to elucidate (or reject) our intuitive
judgment that the extension is sterile. Perhaps some powerful convergence
theorem will be discovered, or some profound reason for the failure to
produce an interesting "learning theorem " for the multilayered machine will
be found .
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pute that function in general. Parallel computers are notoriously dif -
ficult to program . Here we have a mechanism whereby we do not
actually have to know how to write the program to get the system to
do it .

the development of an implementational base for physical realizations

of connectionist computational devices , especially in the areas of

optics and analog VLSI .

Graceful Degradation Finally connectionist models are interesting

candidates for cognitive - science models because of their property of

graceful degradation in the face of damage and information overload .

The ability of our networks to learn leads to the promise of com -

puters that can literally learn their way around faulty components

because every unit participates in the storage of many patterns and

because each pattern involves many different units , the loss of a few

components will degrade the stored information , but will not lose it .

Similarly such memories should not be conceptualized as having a

certain fixed capacity . Rather there is simply more and more storage

interference and blending of similar pieces of information as the

memory is overloaded . This property of graceful degradation mimics

the human response in many ways and is one of the reasons we find

these models of human information processing plausible .

8 .2 The State of the Art

Recent years have seen a virtual explosion of work in the con -

nectionist area. This work has been singularly interdisciplinary , being

carried out by psychologists , physicists , computer scientists , engineers ,

neuroscientists , and other cognitive scientists . A number of national

and international conferences have been established and are being

held each year . In such environment it is difficult to keep up with the

rapidly developing field . Nevertheless a reading of recent papers

indicates a few central themes to this activity . These themes include

the study of learning and generalization (especially the use of the

backpropagation learning procedure ) , applications to neuroscience ,

mathematical properties of networks - both in terms of learning and

the question of the relationship among connectionist style computa -

tion and more conventional computational paradigms - and finally



Learning and Generalization

The backpropagation learning procedure has become possibly the

single most popular method for training networks . The procedure has

been used to train networks on problem domains including character

recognition , speech recognition , sonar detection , mapping from spell -

ing to sound , motor control , analysis of molecular structure , diagnosis

of eye diseases, prediction of chaotic functions , playing backgammon ,

the parsing of simple sentences , and many , many more areas of appli -

cation . Perhaps the major point of these examples is the enormous

range of problems to which the backpropagation learning procedure

can usefully be applied . In spite of the rather impressive breadth of

topics and the success of some of these applications , there are a

number of serious open problems . The theoretical issues of primary

concern fall into three main areas: (1) The architecture problem - are

there useful architectures beyond the standard three - layer network

used in most of these areas that are appropriate for certain areas of

application ? (2) The scaling problem - how can we cut down on the

substantial training time that seems to be involved for the more dif -

ficult and interesting problem application areas? (3) The generaliza -

tion problem - how can we be certain that the network trained on a

subset of the example set will generalize correctly to the entire set of

exemplars ?

Some Architecture

Although most applications have involved the simple three - layer

back propagation network with one input layer , one hidden layer ,

and one output layer of units , there have been a large number of

interesting architectures proposed - each for the solution of some

particular problem of interest . There are, for example , a number of

" special " architectures that have been proposed for the modeling
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Although there are many other interesting and important devel -

opments , I conclude with a brief summary of the work with which I

have been most involved over the past several years, namely , the

study of learning and generalization within multilayer networks .

Even this summary is necessarily selective , but it should give a sam-

pling of much of the current work in the area.
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Figure 8 .5
A recurrent network of the type developed by Jordan (1986) for learning to
perform sequences .

of such sequential phenomena as motor control . Perhaps the most
important of these is the one proposed by Mike Jordan (1986) for
producing sequences of phonemes. The basic structure of the net-
work is illustrated in figure 8.5. It consists of four groups of units:
Plan units, which tell the network which sequence it is producing , are

fixed at the start of a sequence and are not changed. Context units,

which keep track of where the system is in the sequence, receive
input from the output units of the systems and from themselves,
constituting a memory for the sequence produced thus far. Hidden
units combine the information from the plan units with that from the
context units to deternline which output is to be produced next .

Output units produce the desired output values. This basic structure,
with numerous variations, has been used successfully in producing

sequences of phonemes (Jordan 1986), sequences of movements
(Jordan 1989), sequences of notes in a melody (Todd 1989), sequences
of turns in a simulated ship (Miyata 1987), and for many other appli-
cations. An analogous network for recognizing sequences has been
used by Elman (1988) for processing sentences one at a time , and
another variation has been developed and studied by Mozer (1988).
The architecture used by Elman is illustrated in figure 8.6. This
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Hidden Units

Input Units Context Units

Figure 8.6
A recurrent network of the type employed by Elman (1988) for learning to
recognIze sequences.

network also involves three sets of units: input units, in which the
sequence to be recognized is presented one element at a time ; a set of

context units that receive inputs from and send inputs to the hidden
units and thus constitute a memory for recent events; a set of hidden

units that combine the current input with its memory of past inputs to
either name the sequence, predict the next element of the sequence,
or both .

Another kind of architecture that has received some attention

has been suggested by Hinton and has been employed by Elman and
Zipser (1987), Cottrell , Munro , and Zipser (1987), and many others.
It has become part of the standard toolkit of backpropagation . This
is the so-called method of autoencoding the pattern set. The basic
architecture in this case consists of three layers of units as in the con -

ventional case; however , the input and output layers are identical .

The idea is to pass the input through a small number of hidden units

and reproduce it over the output units . This requires the hidden units

to do a kind of nonlinear - principle components analysis of the input

patterns . In this case that corresponds to a kind of extraction of crit -

ical features . In many applications these features turn out to provide a

useful compact description of the patterns . Many other architectures

are being explored . The space of interesting and useful architecture is

large and the exploration will continue for many years.



The Scaling Problem
The scaling problem has received somewhat less attention , although it
has clearly emerged as a central problem with backpropagationlike
learning procedures. The basic finding has been that difficult prob-
lems require many learning trials. For example, it is not unusual to

require tens or even hundreds of thousands of pattern presentations to
learn moderately difficult problems- that is, those whose solution

requires tens of thousands to a few hundred thousand connections.
Large and fast computers are required for such problems, and it is
impractical for problems requiring more than a few hundred thou -
sand connections. It is therefore a matter of concern to learn to speed

up the learning so that it can learn more difficult problems in a more
reasonable number of exposures. The proposed solutions fall into two

basic categories. One line of attack is to improve the learning proce-
dure either by optimizing the parameters dynamically (that is, change
the learning rate systematically during learning) or by using more
information in the weight -changing procedure (that is, the so-called
second-order backpropagation in which the second derivatives are
also computed). Although some improvements can be attained
through the use of these methods, in certain problem domains the
basic scaling problem still remains. It seems that the basic problem is
that difficult problems require a large number of exemplars, however
efficiently each exemplar is used. The other view grows from viewing
learning and evolution as continuous with one another. On this view
the fact that networks take a long time to learn is to be expected

because we normally compare their behavior to organisms that have

long evolutionary histories. On this view the solution is to start the
system at places that are as appropriate as possible for the problem
domain to be learned. Shepherd (1989) has argued that such an

approach is critical for an appropriate understanding of the phenom-
ena being modeled .

A final approach to the scale problem is through modularity . It is
possible to break the problem into smaller subproblems and train
subnetworks on these subproblems. Networks can then finally be
assembled to solve the entire problem after all of the modules are
trained . An advantage of the connectionist approach in this regard is
that the original training needs to be only approximately right . A final
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round of training can be used to learn the interfaces among the

modules .

The Generalization Problem

One final aspect of learning that has been looked at is the nature of

generalization . It is clear that the most important aspect of networks is

not that they learn a set of mappings but that they learn the function

implicit in the exemplars under study in such a way that they respond

properly to those cases not yet observed . Although there are many

cases of successful generalization ( compare the learning of spelling with

phoneme mappings in Sejnowski and Rosenberg ' s Nettalk ( 1987 ) ,

there are a number of cases in which the networks do not generalize

correctly ( compare Denker , et al . 1987 ) . One simple way to under -

stand this is to note that for most problems there are enough degrees

of freedom in the network that there are a large number of genuinely

different solutions to the problems , and each solution constitutes a

different way of generalizing to the unseen patterns . Clearly not all of

these can be correct . I have proposed a hypothesis that shows some

promise in promoting better generalization ( Rumelhart 1988 ) . The

basic idea is this : The problem of generalization is essentially the in -

duction problem . Given a set of observations , what is the appropriate

principle that applies to all cases ? Note that the network at any point

in time can be viewed as a specification of the inductive hypothesis . I

have proposed that we follow a version of Occam ' s razor and select

the simplest , most robust network that is consistent with the observa -

tions made . The assumption of robustness is simply an embodiment of

a kind of continuity assumption that small variations in the input

patterns should have little effect on the output and on the perfor -

mance of the system . The simplicity assumption is simply - of all

networks that correctly account for the input data - to choose that

net with the fewest hidden units , fewest connections , most symme -

tries among the weights , and so on . I have formalized this procedure

and modified the backpropagation learning procedure so that it pre -

fers simple , robust networks and , all things being equal , will select

those networks . In many cases it turns out that these are just the

networks that do the best job generalizing .
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