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ABSTRACT 

I will describe my recent results on the automatic development of fixed­
width recursive distributed representations of variable-sized hierarchal data 
structures. One implication of this wolk is that certain types of AI-style 
data-structures can now be represented in fixed-width analog vectors. Simple 
inferences can be perfonned using the type of pattern associations that 
neural networks excel at Another implication arises from noting that these 
representations become self-similar in the limit Once this door to chaos is 
opened. many interesting new questions about the representational basis of 
intelligence emerge, and can (and will) be discussed. 

INTRODUCTION 

A major problem for any cognitive system is the capacity for, and the induction of the 
potentially infinite structures implicated in faculties such as human language and 
memory. 
Classical cognitive architectures handle this problem through finite but recursive sets of 
rules, such as fonnal grammars (Chomsky, 1957). Connectionist architectures, while 
yielding intriguing insights into fault-tolerance and machine leaming, have, thus far, not 
handled such productive systems in an adequate fashion. 

So, it is not surprising that one of the main attacks on connectionism, especially on its 
application to language processing models, has been on the adequacy of such systems to 
deal with apparently rule-based behaviors (Pinker & Prince, 1988) and systematicity 
(Fodor & Pylyshyn, 1988). 

I had earlier discussed precisely these challenges for connectionism, calling them the 
generative capacity problem for language, and the representational adequacy problem for 
data structures (Pollack, 1987b). These problems are actually intimately related, as the 
capacity to recognize or generate novel language relies on the ability to represent the 
underlying concept. 
Recently, I have developed an approach to the representation problem, at least for recur­
sive structures like sequences and trees. Recursive auto-associative memory (RAAM) 
(Pollack, 1988a). automatically develops recursive distributed representations of finite 
training sets of such structures, using Back-Propagation (Rumelhart et al., 1986). These 
representations appear to occupy a novel position in the space of both classical and con­
nectionist symbolic representations. 
A fixed-width representation of variable-sized symbolic trees leads immediately to the 
implication that simple fonns of neural-netwolk associative memories may be able to 
perfonn inferences of a type that are thought to require complex machinery such as vari­
able binding and unification. 

But when we take seriously the infinite part of the representational adequacy problem, we 
are lead into a strange intellectual area, to which the second part of this paper is 
addressed. 
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BACKGROUND 

RECURSIVE AUTO-ASSOCIATIVE MEMORY 

A RAAM is composed of two mechanisms: a compressor, and a reconstructor, which are 
simultaneously trained. The job of the compressor is to encode a small set of fixed-width 
patterns into a single pattern of the same width. This compression can be recursively 
applied, from the bottom up, to a fixed-valence tree with distinguished labeled terminals 
(leaves), resulting in a fixed-width pattern representing the entire structure. The job of 
the reconstructor is to accurately decode this pattern into its parts, and then to further 
decode the parts as necessary, until the tenninal patterns are found, resulting in a recon­
struction of the original tree. 

For binary trees with k-bit binary patterns as the leaves, the compressor could be a 
single-layer feedforward network with 2k inputs and k outputs, along with additional con­
trol machinery. The reconstructor could be a single-layer feedforward-network with k 
inputs and 2k outputs, along with a mechanism for testing whether a pattern is a tenninal. 

We simultaneously train these two networks in an auto-associative framework as follows. 
Consider the tree, «0 (A N»(Y (P (0 N»), as one member of a training set of such trees, 
where the lexical categories are pre-encoded as k-bit vectors. If the 2k-k-2k network is 
successfully trained (defined below) with the following patterns (among other such pat­
terns in the training environment), the resultant compressor and reconstructor can reliably 
fonn representations for these binary trees. 

input pattern hidden pattern output pattern 

A+N ~ RAN(t) ~ A,+N, 
O+RAN(t) ~ RDAN(t) ~ O~RAN(t)' 
D+N ~ RDN(t) ~ O,+N, 
P+RDN(t) ~ RpDN(t) ~ P,+RDN(t), 
Y+RpDN(t) ~ RVPDN(t) ~ Y,+RpDN(t), 
RDAN(t)+RvPDN(t) ~ RDANVPDN<t) ~ RDAN(t)I+RvPDN(t), 

The (initially random) values of the hidden units, Rj(t), are part of the training environ­
ment, so it (and the representations) evolve along with the weights. I 

Because the training regime involves multiple compressions, but only single reconstruc­
tions, we rely on an induction that the reconstructor works. If a reconstructed pattern, say 
RpDN', is sufficiently close to the original pattern, then its parts can be reconstructed as 
well. 

AN EXPERIMENT 

The tree considered above was one member of the first experiment done on RAAM's. I 
used a simple context-free parser to parse a set of lexical-category sequences into a set of 
bracketed binary trees: 

(0 (A (A (A N»» 
«0 N)(P (0 N») 

(Y (0 N» 
(P (0 (A N») 

«0 N) Y) 

1 This ~moving target" strategy is also used by (Elman, 1988) and (Dyer et aI., 1988). 
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«D N) (V (D (A N»») 
«D (A N» (V (P (D N»» 

Each terminal pattern (D A N V & P) was represented as a l-bit-in-5 code padded with 5 
zeros. A 20-10-20 RAAM devised the representations shown in figure I. 

pp 

p 

(P (0 N» 

(P (0 (A N») 

oOOa· ,··00 
DODO' .•. - 0 
0000' .•. ·0 
o· a - .• . 00· 

0·0· . • ·00 D 

· -Do ·0 ' 000 
· ·oD·o·o·O 
· ·0· ·o·oao 
· -0' ·0 · 000 

(A N) • 
(A (A N» .. 000· . D a . 

A A AN' DODO· • • 0 -
«0 N) V) 00·00 D 000· 

«0 N)(V (0 (A N»» o· D • • • • 0 D • 

«0 (A N» (V (P (0 N»» . o· · . 0 . 00 . 

Figure I. 

Representations of all the binary trees in the training set. devised by a 
20-10-20 RAAM. manually clustered by phrase-type. The squares represent 
values between 0 and 1 by area. 

I labeled each tree and its representation by the phrase type in the grammar, and sorted 
them by type. The RAAM, without baving any intrinsic concepts of phrase-type, has 
clearly developed a representation with similarity between members of the same type. 
For example, the third feature seems to be clearly distinguishing sentences from non­
sentences, the fifth feature seems to be involved in separating adjective phrases from oth­
ers, while the tenth feature appears to distinguish prepositional and noun phrases from 
others.2 

At the same time, the representation must be keeping enough information about the sub­
trees in order to allow the reconstructor to accurately recover the original structure. So, 
knowledge about structural regularity flows into the wt:ights while constraints about con­
text similarity guide the development of the representations. 

RECURSIVE DISTRIBUTED REPRESENTATIONS 

These vectors are a very new kind of representation, a recursive, distributed represen­
tation, hinted at by Hinton's (1988) notion of a reduced description. 

They combine aspects of several disparate representations. Like feature-vectors, they are 
fixed-width, similarity-based, and their content is easily accessible. Like symbols, they 
combine only in syntactically well-formed ways. Like symbol-structures, they have con­
stituency and compositionality. And, like pointers. they refer to larger symbol structures 

2 In fact, by these metrics, the test case «D N)(P (D N))) should really be classified as a sentence; since it was 
not used in any other construction, there was no reason for the RAAM to believe otherwise. 
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which can be efficiently retrieved. 

But. unlike feature-vectors. they compose. Unlike symbols. they can be compared. 
Unlike symbol structures. they are fixed in size. And. unlike pointers. they have content. 

Recursive distributed representations could. potentially. lead to a reintegration of syntax 
and semantics at a very low level3• Rather than having meaning-free symbols which syn­
tactically combine. and meanings which are recursively ascribed. we could functionally 
compose symbols which bear their own meanings. 

IMPLICATIONS 

One of the reasons for the historical split between symbolic AI and fields such as pattern 
recognition or neural networks is that the structured representations AI requires do not 
easily commingle with the representations offered by n-dimensional vectors. 

Since recursive distributed representations form a bridge from structured representations 
to n-dimensional vectors. they will allow high-level AI tasks to be accomplished with 
neural networks. 

ASSOCIATIVE INFERENCE 

There are many kinds of inferences which seem to be very easy for humans to perform. 
In fact, we must perform incredibly long chains of inferences in the act of understanding 
natural language (Birnbaum. 1986). 

And yet, when we consider performing those inferences using standard techniques which 
involve variable binding and unification, the costs seem prohibitive. For humans. how­
ever. these inferences seem to cost no more than simple associative priming (Meyer & 
Schvaneveldt. 1971). 

Since RAAMS can devise representations of trees as analog patterns which can actually 
be associated, they may lead to very fast neuro-Iogical inference engines. 

For example. in a larger experiment. which was reported in (Pollack. 1988b). a 48-16-48 
RAAM developed representations for a set of ternary trees. such as 

(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN») 

which corresponded to a set of sentences with complex constituent structure. This 
RAAM was able to represent. as points within a 16-dimensional hypercube. all cases of 
(LOVED X Y) where X and Y were chosen from the set {JOHN, MARY. PAT. MAN}. 

A simple test of whether or not associative inference were possible. then, would be to 
build a "symmetric love" network, which would perform the simple inference: "If 
(LOVED X Y) then (LOVED Y X)". 

A netwoIk with 16 input and output units and 8 hidden units was successfully trained on 
12 of the 16 possible associations. and worked perfectly on the remaining 4. (Note that it 
accomplished this task without any explicit machinery for matching and moving X and 
Y.) 
One might think. that in order to chain simple inferences like this one we will need many 
hidden layers. But there has recently been some coincidental work showing that feed-

3 The wrong distinction is the inverse of the undifferentiated concept problem in science, such as the fusing of 
the notions of heat and temperature in the 17th century (Wiser & Carey. 1983). For example. a company which 
manufactured workstations based on a hardware distinction between characters and graphics had deep trouble 
when trying to build a modem window system ... 
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forward networks with two layers of hidden units can compute arbitrary mappings 
(Lapedes & Farber. 1988a; Lippman. 1987). Therefore, we can assume that the sequen­
tial application of associative-style inferences can be speeded up, at least by retraining. to 
a simple 3-cycle process. 

OPENING THE DOOR TO CHAOS 

The Capacity of RAAM's 

As discussed in the introduction. the question of infinite generative capacity is central. 10 
the domain of RAAM's the question becomes: Given a finite set of trees to represent. 
how can the system then represent an infinite number of related trees. 
For the syntactic-tree experiment reported above. the 20-10-20 RAAM was ooly able to 
represent 32 new trees. The 48-16-48 RAAM was able to represent many more than it 
was trained on. but not yet an infinite number in the linguistics sense. 
I do not yet have any closed analytical forms for the capacity of a recursive auto­
associative memory. Given that is is not really a file-cabinet or content-addressable 
memory, but a memory for a gestalt of rules for recursive pattern compression and recon­
struction. capacity results such as those of (Willshaw. 1981) and (Hopfield, 1982) do not 
directly apply. Binary patterns are not being stored. so one cannot simply count how 
many. 
I have considered. however. the capacity of such a memory in the limit, where the actual 
functions and analog representations are not bounded by single linear transformations 
and sigmoids or by 32-bit floating point resolution. 

Figure 2. 
A plot of the bit-interspersal function. The x and y axis represent the left and 
right subtrees. and the height represents the output of the function. 

Consider just a 2-1-2 recursive auto-associator. It is really a reconstructible mapping 
from points in the unit square to points on the unit line. 10 order to work. the function 
should define a parametric I-dimensional curve in 2-space. perhaps a set of connected 
splines.4 As more and more data points need to be encoded. this parametric curve will 
become more convoluted to cover them . In the limit, it will no longer be a I-dimensional 
curve. but a space-filling curve with a fractional dimension. 

4 (Saund, 1987) originally made the connection between auto-association and dimensionality reduction. If such 
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One possible functional basis for this ultimate 2-1-2 recursive auto-associator is "bit­
interspersal," where the compression function would return a number, between 0 and 1, 
by interleaving the bits of the binary-fractional representations of the left and right sub­
trees. Figure 2 depicts this function, not as a space-filling curve, but as a surface, where 
no two points project to the same height. The surface is a 3-dimensional variant of a 
recognizable instance of Cantor dust called the devil's staircase. 

Thus, it is my working hypothesis that alternative activation functions (i.e. other than the 
usual sigmoidal or threshold), based on fractal or chaotic mathematics, is the critical 
missing link between neural networlcs and infinite capacity systems. 

Between AI and Chaos 

The remainder of this paper is what is behind the door; the result of simultaneous con­
sideration of the fields of AI, Neural Networks, Fractals, and Olaos.s It is, in essence, a 
proposal on where (I am planning) to look for fruitful interplay between these fields, and 
what some interdisciplinary problems are which could be solved in this context. 

There has already been some intrusion of interest in chaos in the physics-based study of 
neural networlcs as dynamical systems. For example both (Hubennan & Hogg, 1987) and 
(Kurten, 1987) show how phase-transitions occur in particular neural-like systems, and 
(Lapedes & Farber, 1988b) demonstrate how a network trained to predict a simple 
iterated function would follow that function's bifurcations into chaos. 

However, these efforts are either noticing chaos, or working with it as a domain. At the 
other end of the spectrum are those relying on chaos to explain such things as the emer­
gence of consciousness, or free will (Braitenberg, 1984, p. 65). 

In between these extremes lies some very hard problems recognized by AI which, I 
believe, could benefit from a new viewpoint. 

Self-Similarity and the Symbol-Grounding Problem 

The bifurcation between structure and form which leads to the near universality of 
discrete symbolic structures with ascribed meanings has lead to a yawning gap between 
cognitive and perceptual subareas of AI. 

This gulf can be seen between such fields as speech recognition and language 
comprehension, early versus late vision, and robotics versus planning. The low-level 
tasks require numeric, sensory re~resentations, while the high-level ones require compo­
sitional symbolic representations. 

The idea of infinitely regressing symbolic representations which bottom-out at perception 
has been an unimplementable folk idea ("Turtles all the way down") in AI for quite some 
time. 
The reason for its lack of luster is that the amount of information in such a structure is 
considered combinatorially explosive. Unless, of course, one considers self-similarity to 
be an information-limiting construction. 

a complete 2-1-2 RAAM could be found. it would give a unique number to every binary tree such that the 
number of a tree would be a invertible function of the numbers of its two subtrees . 

.5 Talking about 4 disciples is both difficult, and dangerous. considering the current size of the chasm. and the 
mutual hostilities: AI thinks NN is just a spectre. NN thinks AI is dead, F thinks it subsumes C, and C thinks F 
is its just showbiz. 

6 It is no surprise then. that neural networks arc much more successful at the former tasks. 
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While working on a ~w activation function for RAAMS which would magically have 
this property, I have started building modular systems of RAAMs, following Ballard's 
(1987) work on non-recursive auto-associators. 
When viewing a RAAM as a constrained system, one can see that the terminal patterns 
are overconstrained and the highest-level non-terminal patterns are unconstrained. Only 
those non-terminals which are further compressed have a reasonable similarity con­
straint. One could imagine a cascade of RAAMs, where the highest non-terminal patterns 
of a low-level RAAM (say, for encodings of letters) are the terminal patterns for a 
middle-level RAAM (say, for words), whose non-terminal patterns are the terminals for a 
higher-level RAAM (say, for sentences). 

If all the representations were the same width, then there must be natural similarities 
between the structures at different conceptual scales. 

Induction Inference and Strange Automata 

The problem of inductive inference1, of developing a machine which can learn to recog­
nize or generate a language is a pretty hard problem, even for regular languages. 

In the process of extending my work on a recurrent high-order neural network called 
sequential cascaded nets (Pollack, 1987a), something strange occurred. 
It is always possible to completely map out any unknown finite-state machine by provid­
ing each known state with every input token, and keeping track of the states. TIris is, in 
fact, what defines such a machine as finite. 
Since a recurrent network is a dynamical system, rather than an automaton, one must 
choose a fuzz-factor for comparing real numbers. For a particular network trained on a 
context-free grammar, I was unable to map it out. Each time I reduced the fuzz-factor, 
the machine doubled in size, much like Mandelbrot's coastline (Mandelbrot, 1982) 
TIris suggests a bidirectional analogy between finite state automata and dynamical sys­
tems of the neural network sort8. An automaton has an initial state, a set of states, a lexi­
con, and and a function which produces a new state given an old state and input token. A 
subset of states are distinguished as accepting states. A dynamical system has an initial 
state, and an equation which defines its evolution over time, perhaps in response to 
environment. 
Such dynamical systems have elements known as attractor states, to which the state of 
the system usually evolves. Two such varieties, limit points and limit cycles, correspond 
directly to similar elements in finite-state automata, states with loops back to themselves, 
and short boring cycles of states (such as the familiar "Please Login. Enter Password. 
Bad Password. Please Login ..... ). 
But there is an element in non-linear dynamical systems which does not have a correlate 
in formal automata theory, which is the notion of a chaotic, or strange, attractor, fiISt 
noticed in work on weather prediction (Lorenz, 1963). A chaotic attractor does not 
repeat. 
The implications for inductive inference is that while, formally, push-down automata and 
Turing machines are necessary for recognizing harder classes of languages, such as 
context-free or context-sensitive, respectively, the idiosyncratic state-table and external 
memory of such devices make them impossible to induce. On the other hand, chaotic 
dynamical systems look much like automata, and should be about as hard to induce. The 

7 For a good survey see (Angluin & Smith, 1983). J. Feldman recently posed this as a "challenge" problem for 
neural networks (c.f. Servan-Scrieber, Cleermans, & McClelland (this volume». 

8 Wolfram (1984) has, of course, made the analogy between dynamical systems and cellular automata. 



534 Pollack 

infinite memory is internal to the state vector, and the finite-state-control is built into a 
more regular, but non-linear, function. 

Fractal Energy Landscapes and Natural Kinds 

Hopfield (1982) described an associative memory in which each of a finite set of binary 
vectors to be stored would define a local minima in some energy landscape. The 
Boltzmann Machine (Ackley et al., 1985) uses a similar physical analogy along with 
simulated annealing to seek the global minimum in such landscapes as well. Pineda 
(1987) has a continuous version of such a memory, where the attract or states are analog 
vectors. 
One can think of these energy minimization process as a ball rolling down hills. Given a 
smooth landscape, that ball will roll into a local minima. On the other hand, if the 
landscape were constructed by recursive similarity, or by a midpoint displacement tech­
nique, such as those used in figures of fractal mountains, there will be an infinite number 
of local minima, which will be detected based on the size of the ball. N aillon and 
Theeten's report (this volume), in which an exponential number of attractors are used, is 
along the proposed line. 

The idea of high-dimensional feature vectors has a long history in psychological studies 
of memory and representation, and is known to be inadequate from that perspective as 
well as from the representational requirements of AI. But AI has no good empirical can­
didates for a theory of mental representation either. 
Such theories generally break down when dealing with novel instances of Natural Kinds, 
such as birds, chairs, and games. A robot with necessary and sufficient conditions, logi­
cal rules, or circumscribed regions in feature space cannot deal with walking into a room, 
recognizing and sitting on a hand-shaped chair. 
If the chairs we know fonn the large-scale local minima of an associative memory, then 
perhaps the chairs we don't know can also be found as local minima in the same space, 
albeit on a smaller scale. Of course, all the chairs we know are only smaller-scale minima 
in our memory for furniture. 

Fractal Compression and the Capacity of Memory 

Consider something like the Mandelbrot set as the basis for a reconstructive memory. 
Rather than storing all pictures, one merely has to store the "pointer" to a picture,9 and, 
with the help of a simple function and large computer, the picture can be retrieved. Most 
everyone has seen glossy pictures of the colorful prototype shapes of yeasts and dragons 
that infinitely appear as the location and scale are changed along the chaotic boundary. 
The first step in this hypothetical construction is to develop a related set with the addi­
tional property that it can be inverted in the following sense: Given a rough sketch of a 
picture likely to be in the set, return the best "pointer" to it 10 

The second step, perhaps using nonnal neural-netwOIk technology, is to build an inverti­
ble DOn-linear mapping from the prototypes in a application domain (like chess positions, 
human faces, sentences, schemata, etc .. ) to the largest-scale prototypes in the mathemati­
cal memory space. 

9 I.e. a point on the complex plane and the window size 

10 Related sets might show up with great frequency using iterated systems, like Newton's method or back­
propagation. And a more precise notion of inversion, involving both representational tolerance and scale. is 
required. 
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Taken together, this hypothetical system turns out to be a look-up table for an infinite set 
of similar representations which incurs no memory cost for its contents. Only the pointers 
and the reconstruction function need to be stored. Such a basis for reconstructive storage 
would render meaningless the recent attempts at "counting the bits" of human memory 
(Hillis, 1988; Landauer, 1986). 

While these two steps together sound quite fantastic, it is closely related to the RAAM 
idea using a chaotIc activation function. The reconstructor produces contents from 
pointers, while the compressor retums pointers from contents. And the idea of a unifonn 
fractal basis for memory is not really too distant from the idea of a unifonn basis for 
visual images, such as iterated fractal surfaces based on the collage theorem (Barnsley et 
aI.,1985). 

A moral could be that impressive demonstrations of compression, such as the bidirec­
tional mapping from ideas to language, must be easy when one can discover the underly­
ing regularity. 

CONCLUSION 

Recursive auto-associatIve memory can develop fixed-width recursive distributed 
representations for variable-sized data-structures such as symbolic trees. Given such 
representations, one implication is that complex inferences, which seemed to require 
complex infonnation handling strategies, can be accomplished with associations. 
A second implication is that the representations must become self-similar and space­
filling in the limit. This implication, of fractal and chaotic structures in mental represen­
tations, may lead to a reconsideration of many fundamental decisions in computational 
cognitive science. 

Dissonance for cognitive scientists can be induced by comparing the infinite output of a 
fonnallanguage generator (with anybody's rules), to the boundary areas of the Mandel­
brot set with its simple underlying function. Which is vaster? Which more natural? 

For when one considers the relative success of fractal versus euclidean geometry at com­
pactly describing natural objects, such as trees and coastlines, one must wonder at the 
accuracy of the pervasive description of naturally-occurring mental objects as features or 
propositions which bottom-out at meaningless tenns. 
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