Implementing Lists in Scala



Overview of Content;
- List Hierarchy

- Nil object

- .1 class

- :: method

- Accessing Lists

- ListBuffer



scala
L1st[+A]
«sealed abstract»
A
scala scala
1 [A] Nil
«final case» «case object»




The Nil object



It has a straight forward implementation.



Nil can be apart of any list
because of co-variance.



\

"+ class vs @ method



\

"scala.:: is a class that
has a constructor defined

because It IS a case class.



scala> scala.::(1, Nil)
val res0: scala.collection.immutable.::[Int] = List(1)

scala> new ::(1, Nil)
val resl: scala.collection.immutable.::[Int] = List(1)



Like Nil, this also has a straight forward implementation.



\ \

IS an Infix, list construction method.



scala> 1 :: Nil
val res0: List|Int] = List(1)

scala> Nil.::(1)
val resl: List|Int] = List(1)



How Is this implemented?



Why use [B >: A] and not [A]?



Consider the following:

abstract class Fruit
class Apple extends Fruit
class Orange extends Fruit

scala> val apples = new Apple :: Nil

apples: List[Apple] = List(Apple@e885cba)

scala> val fruits = new Orange :: apples

fruits: List[Fruit] = List(Orange@3f51b349, Apple@e885cba)



Lists have a natural recursive structure.
This means accessing lists In a recursive
manner appears to be logical.



The main problem is that (for non-tail recursive
functions) a new stack frame Is created for each call.



The solution Is to use an Imperative approach.



Lists end up using imperative approaches for
their methods, such as map.



Another effecient way to construct
ists is to use a ListBuffer .



ListBuffer constructs an internal list, it does
this by modifiying (!) the tail when needed.



Functional on the outside.



Questions?



