- 1. Suppose $\sigma_1 = \{\langle x, 1 \rangle, \langle y, 2 \rangle, \langle z, 3 \rangle\}$, $\sigma_2 = \{\langle y, 5 \rangle\}$, and $\sigma_3 = \{\langle w, 1 \rangle\}$. What are the results of the following operations?
 - (a) $\sigma_1 \uplus \sigma_2$
 - (b) $\sigma_1 \uplus \sigma_3$
 - (c) $\sigma_2 \uplus \sigma_3$
 - (d) $\varnothing \uplus \sigma_2$
 - (e) $\sigma_1 \otimes \sigma_3$
 - (f) $\sigma_1 \otimes \sigma_2$
 - (g) $(\sigma_1 (\sigma_1 \otimes \sigma_3)) \cup \sigma_3$
- 2. Write operational semantics rules for the 'implies', 'not', and '<=' operators of *NotJava*.
- 3. Derive the complete operational semantics for the program below, where the initial value of n is 3. Show all execution rule applications and derive the final state that includes <fib0, 2>. Assume that the initial state $\sigma = \emptyset$.

```
n = 3;
fib0 = 0;
fib1 = 1;
while (n > 0) {
  temp = fib0;
  fib0 = fib1;
  fib1 = fib0 + temp;
  n = n - 1;
}
```

- 4. Show how the meaning of each of the following expressions and statements and given states are derived from the function M. Show your work (all the steps).
 - (a) $M((z+2)*y, \{\langle x, 2 \rangle, \langle y, -3 \rangle, \langle z, 75 \rangle\})$
 - (b) $M(z = 2*x + 3/y 4, \{ \langle x, 2 \rangle, \langle y, -3 \rangle, \langle z, 75 \rangle \})$
 - (c) $M(1, \{\langle x, 2 \rangle, \langle y, -3 \rangle, \langle z, 75 \rangle\})$