
Otterbein University Otterbein University

Digital Commons @ Otterbein Digital Commons @ Otterbein

Mathematics Faculty Scholarship Mathematical Sciences

2009

The Hidden Injuries Of Overloading 'ADT The Hidden Injuries Of Overloading 'ADT

Duane Buck
Otterbein University, DBuck@otterbein.edu

David J. Stucki
Otterbein University, dstucki@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/math_fac

 Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation Repository Citation
Buck, Duane and Stucki, David J., "The Hidden Injuries Of Overloading 'ADT" (2009). Mathematics Faculty
Scholarship. 13.
https://digitalcommons.otterbein.edu/math_fac/13

This Conference Proceeding is brought to you for free and open access by the Mathematical Sciences at Digital
Commons @ Otterbein. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized
administrator of Digital Commons @ Otterbein. For more information, please contact
digitalcommons07@otterbein.edu.

https://digitalcommons.otterbein.edu/
https://digitalcommons.otterbein.edu/math_fac
https://digitalcommons.otterbein.edu/math
https://digitalcommons.otterbein.edu/math_fac?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.otterbein.edu/math_fac/13?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons07@otterbein.edu

The Hidden Injuries of Overloading “ADT”
Duane Buck

Otterbein College
Mathematical Sciences Dept.

Westerville, OH 43081
614-823-1793

DBuck@Otterbein.edu

David J. Stucki
Otterbein College

Mathematical Sciences Dept.
Westerville, OH 43081

614-823-1722

DStucki@Otterbein.edu

ABSTRACT

The most commonly stated definition of abstract data type (ADT)

is that it is a domain of values and the operations over that

domain. So, for example, a language's built-in types, like int are

seen to be ADTs. It is our opinion that a pure interpretation of

this definition yields a semantics in which using an ADT is the

same as using built-in types: the operations are side effect free and

there is no concern over alias, shallow copy or synchronization

problems. Unfortunately, the term abstract data type has over time

been associated with at least three distinct meanings, and those

incompatible definitions have often been conflated, causing

confusion to students and textbook authors alike. We believe that

this has resulted in a loss of appreciation for the value-based

semantics of ADTs.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and

Features – abstract data types, classes and objects, data types and

structures, modules. E.1 [Data]: Data Structures – lists, stacks,

queues, and trees. K.3.2 [Computers and Education]: Computer

science education

General Terms

Performance, Design, Standardization, Languages.

Keywords

Abstract data types, containers, interfaces, modeling, data

representation, value semantics.

1. INTRODUCTION
One of the inevitable consequences of growth and progress within

any discipline, particularly one as young as computer science, is

the corruption of terminology. As a concept evolves and is fleshed

out (or as a technology changes) it will often retain its earliest

designation, even when it develops well beyond the literal

semantic connotation of this label. In many cases, this is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.

Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.

immaterial. For example, modern machine execution models don‘t

follow the simplistic description fetch-execute cycle; yet the term

continues to prevail without ill effect. Occasionally however, it

becomes necessary to recognize a particular use of language as

abusive and bring to the community‘s attention its harmful effects.

The term Abstract Data Type has a long history, intertwined with

the parallel developments of data representation, programming

languages, data algebras, and object-oriented concepts. We do not

intend to recapitulate that history here. However, we do feel that

the current broad uses to which this term is applied are untenable,

inconsistent, and ultimately damaging to students‘ understanding

of best software practices.

In order to simplify our discussion, we would like to identify three

broad genres that have been described as Abstract Data Types.

First, in its purest usage, an ADT is defined to be a set of values

along with the operations on those values. For the time being, let

us call these Platonic Types. Secondly, it has become standard

practice to denote classical data structures (stacks, list, trees, etc.)

as ADTs. We will use the more recent label, Containers. From a

theoretical perspective Containers can be subsumed under the first

genre. However, for pragmatic reasons implementations usually

utilize mutable objects so we will treat them separately. Finally,

many authors have begun to use the term ADT more generally to

describe classes that present a public interface and private

implementation. This case represents such a diversity of

application (e.g., interfaces in Java, packages in Ada, classes or

user-defined types in language neutral texts, etc.) that there is not

a uniform term we can identify, so we will use the term interface

in its broad sense.

2. ABSTRACTION & REPRESENTATION
Before we examine these genres in detail, it is important to lay out

the larger context of representation. When we model within a

computer system, we are creating an abstraction. The model is

abstract in that we only codify those aspects of the thing being

modeled that are necessary to carry out the responsibilities of the

system. Consider the following two general categories that are

modeled within computer systems.

We owe our operational conceptualization of numerical values to

an ancient philosophical tradition. It was the Greek thinker Plato

who first described an ideal realm of intangible, immutable

archetypes, of which numbers were only a special case. The

majority of practicing mathematicians and scientists today

continue to think of mathematical objects as existing in this

platonic universe, having an abstract nature that is different in

kind from physical entities. These abstract types are pure concepts

and their constituent values are immutable, unchanging. The

integer 5 does not suddenly become the integer 7. Any domain of

mathematically defined values thus exists in the platonic realm.

For example, strings of symbols can be formalized as a

mathematical domain (the language design choice that made

String instances immutable in Java is consistent with this view).

On the other extreme of the spectrum are those entities that exist

in the physical world. They are distinct from mathematical objects

in that they are mutable through their interactions in the physical

world. A student could change her name, and she would still be

the same student. An automobile could be painted a different

color and still be the same automobile. Software reuse and other

engineering principles lead us to organize abstract taxonomies of

these real-world entities (e.g., inheritance hierarchies of classes:

Student, etc.). This significant distinction between platonic and

physical entities should impact the way we model them in order to

create more understandable and maintainable software.

We will argue that only models of the Platonic Type genre, whose

constituent instances are immutable, should properly be called

ADTs. We should note here that we recognize that the social

momentum behind the current practices may be commensurate

with the QWERTY keyboard, or the inclusion of GOTO

statements in programming languages. This doesn‘t negate our

argument in principle—it merely means that it may be too late to

recall the overloaded term ADT and have the community use it as

we argue it should properly be used. We will, however, argue that

the conflation of different usages of ADT has caused confusion in

the community and produces suboptimal results in software

modeling. At the very least, elucidating the different kinds of

models to which the term ADT is applied, correctly or in some

sense incorrectly, will strengthen the modeling acumen of us and

our students.

3. ADT: AN OVERLOADED MONIKER
First, let‘s get past a point on which there is little controversy. The

most common definition for ADT is that it is a domain (a set of

values) and the operations defined on that domain (See, for

example [3, 6, 9, 12, 16]). Common examples found in textbooks

are integers and strings, which are modeled in Java for instance as

int (or Integer) and String. An operation for an int would be the

dyadic function addition, while an operation for String would be

the dyadic function concatenation. There are also monadic

functions like negation and toUpperCase(). We agree that these

are clearly ADTs.

This first definition is largely derived from the theory of types,

and carries the pure mathematical quality of abstraction, or

intangibility. When we build computer models, we must

necessarily choose representations for these abstract types in

terms of the primitives of the computational environment. We can

observe two things about this situation. First, it really is a choice

of representation, as there is always more than one feasible

mapping from the abstract domain to the computational primitives

(e.g., sign and magnitude vs. two‘s complement). Second, this

choice is transparent to the resulting model. That is, there is an

abstraction barrier separating the conceptual entities from their

representation. The presence of both of these elements justifies

use of the term abstract data type.

In light of this, it makes little sense to us to refer to models of

physical entities as abstract data types. Physical entities simply

don‘t fit well into the platonic universe of values. A Student class

would not have an operator that takes in two students and

produces a third student that is somehow a function of those two

students (although we concede that there is a biological basis for

that!). Likewise, there would not be a monadic operator that

produces a new student that is somehow functionally related to

that single student. Also, students change, and thus their

representations are modified. Because the objects that represent a

student are mutable, instances of the Student class are not

representations of pure values, so how can they form the elements

of a domain called for in the definition of an abstract data type?

Therefore, models of physical entities are clearly not ADTs,

although this use of the term is not uncommon.

Many textbooks (see [1, 2, 4, 16]) will skip over built-in ADTs,

such as int or String, and immediately present Containers as the

canonical examples of ADTs. Containers raise interesting issues

because they are ambiguous relative to the platonic/physical

distinction. It is possible to conceptualize Containers in a purely

mathematical manner. This can be seen in the way that lists are

implemented as immutable structures in pure functional languages

like LISP. On the other hand, there are entities in the world, like

box-office queues and cafeteria tray stacks, that bear a structural

relationship to the mathematical abstraction, but which are, by

their very natures, mutable. It is also interesting to note that the

fact that Containers are defined as ADTs independent of the

underlying type of their elements (à la generics) affords them a

greater degree of abstraction than is implied by the term ADT. We

will return to a discussion of implementation issues with

containers below.

So, where does the controversy arise? There are several contexts

in which the use of the term ADT can be confusing, misleading,

or inconsistent.

Like so many issues in computer science, the first source of

confusion arises from concerns of computational efficiency—

specifically, Platonic Types for which representing values is

―expensive.‖ First, let‘s look at a Platonic Type for which Java

has two implementations, one an ADT and the other not an ADT.

Java implements the concept of string as an ADT using the String

class. Operations defined on objects of that class treat the objects

as values, never altering them and instead producing new objects

functionally related to the inputs. However, it also supplies the

StringBuffer class, whose instances are mutable and can denote

different platonic strings at different times. This class can increase

efficiency because in a long series of operations multiple String

objects do not have to be created. Care must be taken not to treat

the StringBuffer object as a platonic value, or confusion could

result when it is modified.

In a pure ADT, an object is a surrogate for a particular value

drawn from the domain, not a variable that can take on any value

within the domain. Therefore a reference variable of the type has

a bit pattern whose interpretation is unchanging, just as the bit

pattern for an integer variable that holds the representation for 5

does not suddenly represent some other value, say 7. (This

reminds one of the authors about a FORTRAN program that

inadvertently passed the integer constant 5 to a subroutine that

also used that parameter for output [all parameters in that version

of FORTRAN were passed by reference]. The storage location in

the constants table that should have always held 5 came to

actually hold 7. Now, where the integer value (constant) 5

appeared in the code the value 7 was actually used. The

debugging session was horrific.)

For types derived from pure mathematical domains, this choice to

represent values with immutable objects ought to be natural, yet

we have found it to be rare. One text that observes this discipline

[6] has two well-crafted examples: 3D_Vector and Rational.

As a Container, the list is a common example of a Platonic Type

in the sense that every possible list of elements can be viewed as a

member of an ideal realm of list values that is not subject to the

vagaries of the physical world. However, it is costly to model it in

terms of explicit values and so it is commonly modeled in terms of

mutable objects. For example, in most implementations that we

have seen there is an add() method that rather than returning a

new value (i.e., a new list containing the additional element), the

method inserts the new element into the existing list. So at the

implementation level, it becomes a hybrid that has some qualities

of a platonic value but is also open to modification. Another way

of looking at it is that its attachment to specific platonic values

changes over time. That is, an object of the type points to one

value in the platonic realm at any one time, but the value that it

denotes changes as the result of operations. We know that

platonic values do not change, but within this hybrid model we do

not have a permanent way of denoting them. So, when we apply a

function to a list, its ―value‖ gets updated. Modeling in this way is

certainly justified in many cases, and in fact can often be

considered a best practice. There is nothing wrong with it as long

as it is understood.

So we‘ve seen both with strings and lists, that there is a design

tension between value-based modeling and modeling with

mutable objects. We feel that it is problematic to call both of these

methods of modeling Platonic Types abstract data types. They are

very different kinds of models whose usage requires a

significantly altered approach. In particular, the latter approach

does not have the same degree of transparency of representation

as the former. Implementation details must be known and

accounted for by the user of the type.

A second source of confusion is related to what we referred to

above as the third genre of uses of the term ADT, in which any

class that presents a public interface, in order to engage in data

encapsulation and information hiding, can be called an ADT, even

when it is representing physical entities. One objection to this is

that although such a class possesses the same sort of abstraction

barrier with implementation independence and user transparency

that we discussed above, it does not map to a domain of values

and so is not a data type in this narrow sense.

Further problems arise when these different definitions are

conflated. One popular data structures text [3, p. 12] has the

following introduction to ADTs:

―An abstract data type consists of a collection of values,

together with a collection of operations on those values.

In object-oriented languages such as Java, abstract data

types correspond to interfaces in the sense that, for any

class that implements the interface, a user of that class

can: (1) Create an instance of that class (‗instance‘

corresponds to ‗value‘) (2) Invoke the public methods of

that class (‗public method‘ corresponds to ‗operation‘).‖

Now if the class is modeling a Platonic Type with instances that

have immutable state, then the above conflation of definitions is

fine. But the very first example in the text following this

definition(s) is an Employee class. But people are not values! Our

students struggle to make sense of this inconsistency.

This is not an isolated incident. A random, small sampling of

textbooks shows that it is not uncommon to equate ADTs and

interfaces [7, 8, 13], ADTs and user-defined types [2, 5, 14],

ADTs and classes [1, 11], and ADTs and Containers [12, 16]. In

fact, many of these do not even restrict ADTs to classes that

engage in encapsulation, but have public data elements. At this

point the term ADT becomes so broad that it acquires that

unfortunate status of meaningless buzz word.

4. “HIDDEN INJURIES”
It might be reasonable to pause at this point and say something

like, ―Well sure, the history and use of the term ADT is a bit

confused and overloaded, but so what? What‘s the harm?‖ We

feel that there is a real potential for harm in the following ways.

First, there is a temptation to allow both approaches to the

modeling of Platonic Types, as values and as mutable objects, to

fall under the same label. If we yield to this temptation we are

masking the distinctions of mental discipline and acuity that are

required in each case. For example, when modeling with values

there is no danger in performing a shallow copy, whereas cloning

would be necessary in the case of mutable objects. This represents

a lack of transparency, requiring knowledge of implementation

details to ensure correctness. Johannes J. Martin ([10, p. 97])

observed this danger more than two decades ago:

―Viewing stacks (or other data forms) as mutable objects

instead of values makes it necessary to introduce the

implicit set of stores. The elements of this set are

mappings (functions) that associate objects (containers)

with their contents. The resulting axioms are more

complicated than those used previously for the value

interpretation. Allowing the dynamic creation of mutable

objects leads to even more complexity. This must be

considered a disadvantage of mutable objects, for simple

semantic rules promote—and complex rules obstruct—

both the correct implementation and use of a data type.

Also, the fact that the set of stores does not explicitly

appear in programs may be a possible source of error.‖

His margin notes are even more telling: ―Mutable objects

complicate specifications and call for discretion;…Deciding

between values and objects deserves care.‖ If one of the functions

of language is to make distinctions apparent, then we do a

disservice to students by not providing unambiguous terminology.

A second potential harm, related to references and aliasing, is

observed by Louden [9, p. 393] in his popular programming

languages text (x and y are instances of an Ada package

ComplexNumbers).

―Part of the problem comes from the use of assignment.

Indeed, when x and y are pointer types, x := y performs

assignment by sharing the object pointed to by y, with

resulting potential unwanted side effects.‖

If ADTs were always models of Platonic Types, then there would

be no risk of unwanted side effects.

Third, we have found that the lack of concern for separating these

subtle distinctions in many textbooks has resulted in students who

don‘t apprehend or appreciate the benefit of modeling with ADTs.

They don‘t understand clearly the relief of burden that the value

approach to modeling Platonic Types yields. This impairs their

modeling faculties. For example, it is typical that once a student

learns that objects passed to methods may be modified, they

inevitably pass an Integer object and then try to set its value

inside the method. Of course, Integer is an ADT and is therefore

immutable, so the student finds that they cannot set its value. The

student, having no appreciation of the great burden added when

objects no longer represent values, assumes that whoever

designed Integer must be either stupid or an egghead.

We find in [15, 16] a "Fraction" ADT that is a valuable example

except that it inexplicably includes mutator methods in a class

otherwise written in the style of a true Java ADT, like String. The

standard Fraction operations, such as add, subtract, multiply, etc.,

return a result that is a new Fraction object; however each object

is also mutable (e.g., there are setNumerator and

setDenominator methods). Choosing to model a platonic type in

this way, especially a simple numeric domain that doesn‘t

introduce efficiency concerns, demonstrates a lack of

contemplation in design. That a respected textbook author can

have such a poor example in a popular textbook is a sign of the

injury to the community caused by neglect to these issues.

5. CONCLUSION
There are three popular uses of the term ADT. The most often

quoted, and we think the correct one, is that an ADT is a set of

values and the operations on those values. The second usage

identifies Containers as ADTs. That is somewhat understandable

because indeed, there are such structured platonic values and

operations. However, using the term ADT for Containers is

problematic because for efficiency reasons Containers are most

often mutable and therefore the representation is no longer value

based; the "operations" have side effects that complicate the

semantics. Finally, the third usage calls any interface with a

private implementation an ADT. In this guise, ADTs are claimed

to model real world entities in addition to platonic ones.

In his excellent programming languages text [9] Kenneth Louden

recognizes the historical/developmental problems that have arisen

from the varied uses of the term ADT. Although his motivation is

in the context of language design, and his discussion is aimed at a

somewhat different audience, some of the observations we have

made here were anticipated even as far back as his 1st edition

more than a decade ago. Louden stops short, however, of

identifying the injuries caused when the overloaded definitions

are conflated. During the intervening 14 years, the misuse of

ADT has continued unabated.

In many ways the object-oriented approach to software

construction followed a parallel evolutionary path to that of the

structured programming movement, out of which the phrase

abstract data type was coined. It is our belief that the vocabulary

that has emerged from the object-oriented sector (e.g., interface)

more appropriately characterizes the kind of modeling that occurs

for real-world, physical entities. Further, the adoption of the label

container is also an improvement for those data structures (e.g.,

list, stack, queue, map, set, etc.) that have historically been called

ADTs. We therefore recommend that the term ADT be reserved

for those Platonic Types that legitimately can be defined as a

domain of values with a set of operations over the domain, and

which are represented as values (i.e., immutable objects).

6. REFERENCES
[1] Aho, Alfred V., and Ullman, Jeffrey D. Foundations of

Computer Science. W. H. Freeman, 1992.

[2] Brookshear, J. Glenn. Computer Science: An Overview, 6th

ed. Addison-Wesley, 2000.

[3] Collins, William J. Data Structures and the Java Collections

Framework, 2nd ed. McGraw-Hill, 2005.

[4] Dale, Nell, and Walker, Henry M. Abstract Data Types:

Specifications, Implementations, and Applications. D. C.

Heath and Company, 1996,

[5] Deitel, H. M., and Deitel, P. J. Java: How To Program, 7th

ed. Prentice-Hall, 2007.

[6] Delillo, Nicholas J. A First Course in Computer Science,

with ADA. Irwin, 1993.

[7] Goodrich, Michael T, and Tamassia, Roberto. Data

Structures and Algorithms in Java, 3rd ed. John Wiley &

Sons, 2003.

[8] Jia, Xiaoping. Object-Oriented Software Development Using

Java: Principles, Patterns, and Frameworks, 1st ed.

Addison-Wesley, 1999.

[9] Louden, Kenneth C. Programming Languages: Principles

and Practice. Brooks/Cole, 2003; and PWS Publishing,

1993.

[10] Martin, Johannes J. Data Types and Data Structures.

Prentice-Hall, 1986.

[11] Meyer, Bertrand. Object-Oriented Software Construction, 2nd

ed. Prentice-Hall, 2000.

[12] Musser, David R., Derge, Gillmer J., and Saini, Atul. STL

Tutorial and Reference Guide, 2nd ed. Addison-Wesley,

2001.

[13] Sahni, Sartaj. Data Structures, Algorithms, and Applications

in C++. McGraw-Hill, 1998.

[14] Schach, Stephen R. Object-Oriented and Classical Software

Engineering, 7th ed. McGraw-Hill, 2006.

[15] Wu, C. Thomas. An Introduction to Object-oriented

Programming with Java, 4th ed. McGraw-Hill, 2005.

[16] Wu, C. Thomas. A Comprehensive Introduction to Object-

Oriented Programming with Java. McGraw-Hill, 2007.

	The Hidden Injuries Of Overloading 'ADT
	Repository Citation

	Proceedings Template - WORD

