Object-Oriented Software Construction, 2" Ed.
Bertrand Meyer
Prentice-Hall, 1997

pp. V - Vii

Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitable
explanation) along the much grayer range of the Californian Pacific; viewed by some as a
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave is
hitting the shores of the computing world.

“Object-oriented” is the latest in term, complementing and in many cases replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the term
is used by different people with different meanings; just as inevitable is the well-known
three-step sequence of reactions that meets the introduction of a new methodological
principle: (1) “it’s trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”.
(The order may vary.)

Let us have this clear right away, lest the reader think the author takes a half-hearted
approach to his topic: I do not see the object-oriented method as a mere fad; I think it is
not trivial (although I shall strive to make it as limpid as I can); I know it works; and 1
believe it is not only different from but even, to a certain extent, incompatible with the
techniques that most people still use today — including some of the principles taught in
many software engineering textbooks. I further believe that object technology holds the
potential for fundamental changes in the software industry, and that it is here to stay.
Finally, I hope that as the reader progresses through these pages, he will share some of my
excitement about this promising avenue to software analysis, design and implementation.

“Avenue to software analysis, design and implementation”. To present the object-
oriented method, this books resolutely takes the viewpoint of software engineering — of
the methods, tools and techniques for developing quality software in production
environments. This is not the only possible perspective, as there has also been interest in
applying object-oriented principles to such areas as exploratory programming and
artificial intelligence. Although the presentation does not exclude these applications, they
are not its main emphasis. Our principal goal in this discussion is to study how practicing
software developers, in industrial as well as academic environments, can use object
technology to improve (in some cases dramatically) the quality of the software they
produce.

vi

PREFACE

Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring method, a
reliability discipline, an epistemological principle and a classification technique.

The structuring method applies to software decomposition and reuse. Software
systems perform certain actions on objects of certain types; to obtain flexible and reusable
systems, it is better to base their structure on the object types than on the actions. The
resulting concept is a remarkably powerful and versatile mechanism called the class,
which in object-oriented software construction serves as the basis for both the modular
structure and the type system.

The reliability discipline is a radical approach to the problem of building software
that does what it is supposed to do. The idea is to treat any system as a collection of
components which collaborate the way successful businesses do: by adhering to contracts
defining explicitly the obligations and benefits incumbent on each party.

The epistemological principle addresses the question of how we should describe the
classes. In object technology, the objects described by a class are only defined by what we
can do with them: operations (also known as features) and formal properties of these
operations (the contracts). This idea is formally expressed by the theory of abstract data
types , covered in detail in a chapter of this book. It has far-reaching implications, some
going beyond software, and explains why we must not stop at the naive concept of
“object” borrowed from the ordinary meaning of that word. The tradition of information
systems modeling usually assumes an “external reality” that predates any program using
it; for the object-oriented developer, such a notion is meaningless, as the reality does not
exist independently of what you want to do with it. (More precisely whether it exists or
not is an irrelevant question, as we only know what we can use, and what we know of
something is defined entirely by how we can use it.)

The classification technique ~ follows fromthe observation that systematic
intellectual work in general and scientific reasoning in particular require devising
taxonomies for the domains being studied. Software is no exception, and the object-
oriented method relies heavily on a classification discipline known as inheritance .

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediately raise

a number of questions. How do we find and describe classes? How should our programs
manipulate classes and the corresponding objects (the instances of these classes)? What
are the possible relations between classes? How can we capitalize on the commonalities
that may exist between various classes? How do these ideas relate to such key software
engineering concerns as extendibility, ease of use and efficiency?

Answers to these questions rely on a small but powerful array of techniques for
producing reusable, extendible and reliable software: polymorphism and dynamic
binding;a new view oftypes andtype checking; genericity, constrained and

Abstract data types
are discussed in
chapter 6, which
also addresses some
of the related episte-
mological issues.

PREFACE PREFAGHI

unconstrained; information hiding; assertions; safe exception handling; automatic garbage
collection. Efficient implementation techniques have been developed which permit
applying these ideas successfully to both small and large projects under the tight
constraints of commercial software development. Object-oriented techniques have also
had a considerable impact on user interfaces and development environments, making it
possible to produce much better interactive systems than was possible before. All these
important ideas will be studied in detail, so as to equip the reader with tools that are
immediately applicable to a wide range of problems.

A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

Moliére, Tartuffe, Act I11.

