
Data Structures
COMP 2100

Fall 2022

Lab 4: Working with Polynomials

In this lab you will implement and test the Polynomial class. A Polynomial object represents any

polynomial in one variable, x, with integer coefficients. For example, here is a cubic polynomial:

𝑓(𝑥) = 4𝑥3 − 𝑥2 + 3𝑥 + 5

This polynomial has four terms, each with an integer coefficient and integer exponent as shown in the

table below.

Term Coefficient Exponent

4𝑥3 4 3

−𝑥2 –1 2

3𝑥 3 1
5 5 0

Strategy
Your class should consist of a list of terms. You should interpret this as ‘HAS-A’, not ‘IS-A’. You should use

the LinkedList class from the JCF (java.util). See pages 3-4 of this document for implementation notes.

The API for Polynomial is here and the API for Term is here. I have completely implemented Term for

you.

I am providing three files for this lab in the accompanying zip file.

1. Term.java, the completed, correct implementation of the Term class.

2. TermPolyDriver.java, a test driver. You can use this to test your Polynomial methods.

3. PolynomialForDriver.java, another Java file which is needed by the test driver to

assure that methods in your solution can be tested in isolation from each other.

Assignment

• Your code must be stored in Polynomial.java

• Your code must contain Javadoc-style comments that reproduce as closely as you can the

Polynomial API at the link above.

• Begin by created a stubbed-in version of Polynomial that will compile, but with default or dummy

code for each method. This will allow the TermPolyDriver program to run without error.

• I encourage you to Implement methods one at a time, testing each one thoroughly as you go.

Remember that individual work is expected on the lab projects!

http://faculty.otterbein.edu/dstucki/COMP2100/Polynomial.html
http://faculty.otterbein.edu/dstucki/COMP2100/Term.html

Points Description

3 Comments including Javadoc

1 Polynomial no argument constructor

3 Polynomial one argument constructor

4 Polynomial addterm() method

3 Polynomial evaluate() method

5 Polynomial sum() method

5 Polynomial product() method

3 Polynomial equals() method

3 Polynomial toString() method

To Submit: Email your Polynomial.java source file as an attachment to dstucki@otterbein.edu

mailto:dstucki@otterbein.edu

Implementation notes
1. Start by implementing Polynomial with stub versions of all its methods. This will allow you to

quickly run the test driver and fail its tests! The Polynomial API has all the information you

need. Constructors and methods declared void will do nothing; methods declared to return

something will return a default value or null for objects.

2. Use the provided Term class in your implementation. The Term API is provided so you know how

to use its methods.

3. The Polynomial class will not extend anything. Instead it will have one instance variable with

this declaration:

protected LinkedList<Term> poly;

4. The LinkedList class is, like ArrayList, part of the Java Collections Framework in the

java.util package (you should look up its API online). Don't be concerned with how it is

implemented, since you have your client hat on. The relationship between Polynomial and

LinkedList is "has-a". A polynomial has-a linkedList.

5. You'll find the one-parameter constructor, once implemented, to be very handy to use for testing.

The parameter is a String containing a list of space-separated integers. The integers are

logically grouped in pairs. Each pair represents a term: the first number of the pair is the

coefficient and the second is the exponent. For example the String "3 2 -5 1 4 0"

represents polynomial 3x2 − 5x + 4. The trick to implementing this constructor is pulling out

those values one by one and converting them from String to int! You will break it up into

tokens, where each number represents a token, or item of interest. Here, the tokens are

separated by spaces. The preferred (but not only) technique for doing this is to use the split()

method from class String. You need to specify the delimiter (separator) as a regular expression.

In this case, the regular expression should be the string "\\s+", which will match one or more

space characters. Elements of the resulting String array still need to be converted to integers.

Remember how to do this? Hint: a static method in the Integer class.

6. Most of the methods require you to traverse through the terms of the polynomial. There is a very

easy way to do this using an Iterator. Iterator is a java.util class. You can get an

Iterator from poly (that's the instance variable), then use its hasNext() and next()

methods together in a while loop to process the polynomial term by term. You might guess that

boolean method hasNext() will let you know if there are more terms in the polynomial, and

Object method next() returns the next term. These two collaborate to traverse the list

something like this:

Iterator<Term> iter = poly.iterator(); // start at position 0 of list

while (iter.hasNext()) {

 Term term = iter.next();

 // do whatever processing you need to do with this term

}

Alternatively, you could use the foreach idiom in Java to accomplish the same thing like this:

for (Term term : poly) {

 // do whatever processing you need to do with this term

}

All of the Polynomial methods (aside from constructors) will do list traversals. Although

everything that iterators do can also be done using LinkedList methods get(int index)

and size(), iterators eliminate the need to work with indexes and are generally a cool thing to

know.

7. The toString() method should produce the polynomial with terms ordered in decreasing

order of exponent. For example: "+3x^2-x+2". Sorting these is very easy to do, thanks to a

java.util class called Collections which provides many handy static methods that can be

applied to an object of any of the Java collection classes. All you need in your program is the line:

Collections.sort(poly, Collections.reverseOrder());

Interesting fact: The sort method determines order by using the Term class compareTo() method!

Hint: You can simplify implementation of toString() by calling the toString() method

from the Term class on each of its terms.

Hint: You can simplify implementation of the equals() method by using toString().

