Galaxies & Introduction to Cosmology

Other Galaxies: How many are there?

- Hubble Deep Field
 Project
 - 100 hour exposures
 over 10 days
 - Covered an area of the sky about 1/100 the size of the full moon
- Probably about 100 billion galaxies visible to us!

- About

 About

 1,500
 galaxies in
 this patch
 alone
- Angular size ~ 2 minutes of arc

Other Galaxies

- there are ~ 100 billion galaxies in the observable Universe
- measure distances to other galaxies using the periodluminosity relationship for Cepheid variables
- Type I supernovae also used to measure distances
 Predictable luminosity a standard candle
- Other galaxies are quite distant
 - Andromeda (M31), a nearby (spiral) galaxy, is 2 million light-years away and comparable in size to Milky Way
- "Island universes" in their own right

Hubble Classification Scheme

- Edwin Hubble (~1924) grouped galaxies into four basic types:
 - Spiral
 - Barred spiral
 - Elliptical
 - Irregular
- There are sub-categories as well

- All have disks, bulges, and halos
- Type Sa: large bulge, tightly wrapped, almost circular spiral arms
- Type Sb: smaller bulge, more open spiral arms
- Type Sc: smallest bulge, loose, poorly defined spiral arms

Barred Spirals (SB)

• Possess an elongated "bar" of stars and interstellar mater passing through the center

Elliptical (E)

- No spiral arms or clear internal structure
- Essentially all halo
- Vary in size from "giant" to "dwarf"
- Further classified according to how circular they are (E0–E7)

S0/SB0

- Intermediate between E7 and Sa
- Ellipticals with a bulge and thin disk, but no spiral arms

Galaxy Formation

- Not very well understood

 More complicated than stellar formation, and harder to observe
- Formation of galaxies begins after Big Bang
- Different than star formation because galaxies may collide and merge

Galaxy Formation

- Galaxies are probably built up by mergers
 - Contrast to break up of clouds in star formation
- Our own Milky Way is eating up the neighboring Sagittarius Dwarf Galaxy

Galaxy Mergers

Start with high density of small proto-galaxiesGalaxies merge and turn into bigger galaxies

The Mass of the Galaxy

- Can be determined using Kepler's 3rd Law
 - Solar System: the orbital velocities of planets determined by mass of Sun
 - Galaxy: orbital velocities of stars are determined by total mass of the galaxy contained within that star's orbit

• <u>Two key results:</u>

- large mass contained in a very small volume at center of our Galaxy
- Much of the mass of the Galaxy is not observed
 - consists neither of stars, nor of gas or dust
 - extends far beyond visible part of our galaxy ("dark halo")

Galaxy Masses

Rotation

 curves of
 spiral galaxies
 comparable to
 milky way

• Masses vary greatly

The Missing Mass Problem

- Dark Matter is dark at all wavelengths, not just visible light
- The Universe as a whole consists of up to 25% of Dark Matter! → Strange!
- What is it?
 - Brown dwarfs?
 - Black dwarfs?
 - Black holes?
 - Neutrinos?
 - Other exotic subatomic particles?
- Actually: Most of the universe (70%) consists of Dark Energy → Even stranger!

Missing Mass Problem

 Keplerian Motion: more distance from center → less gravitational pull → slower rotational speed

The Tully-Fisher Relation

- A relation between the rotation speed of a spiral galaxy and its luminosity
- The more mass a galaxy has → the brighter it is → the faster it rotates → the wider the spectral lines are
- Measuring rotation speed allows us to estimate luminosity; comparing to observed (apparent) brightness then tells us the distance

Beyond the Galactic Scale – Clusters of Galaxies

The Local Group

The Virgo Cluster

Superclusters: Clusters of Galaxy Clusters

Beyond Superclusters

- Strings, filaments, voids
- Reflect structure of the universe close to the Big Bang
- Largest known structure: the Great Wall (70 Mpc × 200 Mpc!)

Latest Results from the 2dF Survey

Cosmology

• The part of astronomy (and astrophysics) that deals with the greatest structures in the universe – and the evolution of the universe itself!

COSMOLOGY MARCHES ON

Cosmological Questions

–What is in the universe?

-How do these things interact?

-How does the universe change in time?

- Is there a beginning?
- Is there an end?

What's in the Universe?

So, why is the night sky dark? (Olbers' Paradox)

Conclusion: either
 Universe is not
 infinite or
 Universe

changes in time

Observation III: Everything is moving away from us!

- Measure spectrum of galaxies and compare to laboratory measurement
- lines are shifted towards red
- This is the Doppler effect: Red-shifted objects are moving away from us

Hubble's Law

- The final rung on the cosmic distance ladder
- <u>Hubble's observations</u> (1920's):
 - Light from distant galaxies is redshifted
 - The more distant the galaxy, the greater the red-shift
- Interpretation:
 - Galaxies are moving away from us
 - More distant galaxies are moving faster
- The universe is expanding, carrying the galaxies with it!

Doppler Shifts of Galaxies

Hubble & Humason (1931)

- $H_0 = (68 \pm 1)$ km/sec/Mpc is Hubble's constant
- Compare to distance = velocity × time
- Appears the universe "exploded" from a single point in the past the Big Bang
- Age of the universe is $1/H_0$ or about 14 billion years

Example

• Object that is 2 Mpc away recesses with v = H d = (68 km/s/Mpc)(2Mpc) = 136 km/s

Object that is receding with 27,200 km/s has distance

d = v/H = (27,200 km/s)/(68 km/s/Mpc)= 400 Mpc