Spectra, Blackbody Radiation and Astrophyics

Fraunhofer Lines in Sunlight discovered (1814)

• Dark lines appear in sunlight falling through a prism, aka the spectrum of the sun

Bight lines appear in the flames of chemical elements

 Salt (sodium + chloride) flame produces a yellow double line at 589 nm.

Hot solid objects give off light at all kinds of wavelengths

- Iron at a blacksmith
- Spectrum of the blue sky

Kirchhoff's Laws

- 1. A luminous solid or liquid (or a sufficiently dense gas) emits light of all wavelengths: the black body spectrum
- Light of a low density hot gas consists of a series of discrete bright emission lines: the positive "fingerprints" of its chemical elements!
- 3. A cool, thin gas absorbs certain wavelengths from a continuous spectrum

→ dark absorption ("Fraunhofer") lines in continuous spectrum: negative "fingerprints" of its chemical elements, precisely at the same wavelengths as emission lines.

Kirchhoff's Laws: Dark Lines

Cool gas absorbs light at specific frequencies→ "the negative fingerprints of the elements"

Kirchhoff's Laws: Bright lines

→ "the positive fingerprints of the elements"

Spectral Lines – Fingerprints of the Elements

 Can use this to identify elements on distant objects!

Different

 elements yield
 different
 emission spectra

Hydroge	ən	U.				
Sodium						
Helium						
Neon						
Mercury	6	1				78
L	1	1	1.	1	1	
650	600	550	500 Wavelength(nm)	450	400	350

Where do Spectral Lines come from?

- This was not known for another 100 years!
- The big obstacle was the discreteness of the lines: only some special selected colors or wavelengths appeared
- But nature is continuous?!
- Stay tuned!

Energy & Power Units

- Energy has units Joule (J)
- Rate of energy expended per unit time is called power, and has units Watt (W)
- Example: a 100 W = 100 J/s light bulb emits 100 J of energy every second
- Nutritional Value: energy your body gets out of food, measured in Calories = 1000 cal = 4200 J
- Luminosity is the same as power radiated

Stefan's Law

- A point on the Blackbody curve tells us how much energy is radiated per frequency interval
- Question: How much energy is radiated in total, i.e. how much energy does the body lose per unit time interval?
- Stefan(-Boltzmann)'s law: total energy radiated by a body at temperature T per second: $P = A \sigma T^4$
- $\sigma = 5.67 \text{ x } 10^{-8} \text{W}/(\text{m}^2 \text{ K}^4)$

Example: Stefan-Boltzmann Law

- Sun T=6000K, Earth t=300K (or you!)
- How much more energy does the Sun radiate per time per unit area?
- Stefan: Power radiated is proportional to the temperature (in Kelvin!) to the fourth power
- Scales like the fourth power!
- Factor f=T/t=20, so $f^4 = 20^4 = 2^4 \times 10^4 = 16 \times 10^4$
- →160,000 x

Black Body Spectrum

• Objects emit radiation of all frequencies, but with different intensities

Cool, invisible galactic gas $(60 \text{ K}, f_{\text{peak}} \text{ in low radio frequencies})$

Dim, young star (600K, f_{peak} in infrared)

The Sun's surface (6000K, f_{peak} in visible)

Hot stars in Omega Centauri (60,000K, f_{peak} in ultraviolet)

The higher the temperature of an object, the higher its I_{peak} and f_{peak}

Wien's Law

• The peak of the intensity curve will move with temperature, this is Wien's law:

Temperature * wavelength = constant = 0.0029 K*m

So: the higher the temperature T, the smaller the wavelength, i.e. the higher the energy of the electromagnetic wave

Example

- Peak wavelength of the Sun is 500nm, so T = (0.0029 K*m)/(5 x 10⁻⁷ m) = 5800 K
- Instructor temperature: roughly 100 °F = $37^{\circ}C = 310$ K, so

wavelength = (0.0029 K*m)/310 K

- $= 9.35 * 10^{-6} m$
- = 9350 nm \rightarrow infrared radiation
- $\approx 10 \ \mu m = 0.01 \ mm$