CSC 225 Lab Project 7

Due: 17 May 2007

15 points
Refactoring the movie rental application
Overview

Remember Project 2, where you developed and applied JUnit testing to an existing Java application? In this project, our attention will turn toward the application code because it smells!

You will work in pairs to apply the sequence of refactoring operations described below. Work as a programming pair. One drives, the other navigates. Change roles after 30 minutes.

After each operation, you must verify that the application is still correct by re-running the JUnit tests. This is called regression testing – to make sure your code that worked before the change will continue to work afterward. In the end, this code will remind you of the lotus flower.
Warm-up refactoring:
· The original code uses Vector and Enumeration. Change it to use ArrayList and Iterator.

· Retest.

CLIENT CHANGE ALERT! The client wants to produce a statement in HTML as well as in plain text.

What changes are required to handle this request?

Which code will be duplicated?

Suppose the next change request is to change the rental charge formula for children’s movies?

First refactoring: (Extract Method)
· Pull out the switch statement to compute rental charge and place it into a separate method.
· Fill in the “hole” left behind with a call to the new method.

· Rerun your tests.
Second refactoring:

· Check variable names in the new method and adjust for clarity.

· Rerun your tests.

Notice that this new method is in the Customer class but does not use any of its fields! Which class should it really belong to? Whose fields does it use?

Third refactoring: (Move Method)
· Copy your method to its rightful class.
· Adjust parameters, references and variables as needed.

· Do not remove the existing method yet! Change it to simply call the new method. This is delegation.
· Rerun your tests.

Fourth refactoring:
· Adjust all references to the Customer method just gutted (there should be only one!) so they now call the new method.
· Delete that Customer method since it is no longer needed.

· Rerun your tests.

The next four refactorings echo the first four, applied to the logic for calculating frequent renter points.

Fifth refactoring: (Extract Method)

· Pull out the logic to calculate the frequent renter points into a new method.

· Fill in the hole with a call.

· Retest.

Sixth refactoring:

· Rename variables in new method as appropriate.

· Retest.

Seventh refactoring: (Move Method)

· Copy frequent points method into Rental class.

· Replace original method body with call to new method (delegation).

· Retest.

Eighth refactoring:

· Adjust references to call new method (there is only one).

· Delete Customer method.

· Retest.

Turn your attention back to the statement() method. Notice there are two local variables. For understandability, the use of locals should be minimized even at the expense of runtime performance.
Ninth refactoring: (Replace Temp with Query)

· Replace references to local variable frequentRenterPoints with method call get that information (query).

· Define the query (accessor) method if necessary.

· Remove declaration of the local variable.

· Retest.

Tenth refactoring: (Replace Temp with Query)
· Repeat this for the local variable totalAmount.

· Retest.

Optional refactoring: Should the above two methods be moved into the Rental class? If you think they do, take care of that now.
Getting back to that client request: After the refactoring, consider how much code is duplicated if you write an htmlStatement() method to produce an HTML version of the statement. Our code is cleaner than before, but still a bit smelly.
Now, let’s turn our attention back to the original moved code containing the switch statement. We need to replace that switch statement and let polymorphism do the decision making.

Eleventh refactoring: (Move Method)

· Refactoring book suggests moving the charge calculation method from Rental to Movie, because the switch is based on the movie’s price code.

· What would the cynic from Head First Design Patterns Say?

· The pricing structure would seem to be an attribute of a rental, but then again the pricing structure is based on the Movie class price code. But the pricing structure is also based on the length of the rental, which is definitely an attribute of Rental.

· If you move it, the critical next step will be easier to see!

· Move it and retest.

Twelfth refactoring: (Strategy Design Pattern)
· Remember the ducks? Different kinds of ducks have different flying behavior! And the flying behavior of a duck can change over its lifetime!

· Similarly, different kinds of movies have different pricing behavior, and the pricing behavior of a movie can change over its lifetime – a new release is not new forever!
· If you correctly apply the Strategy design pattern to this problem, the switch statement goes away.

· And we’re programming to an interface too!

· Apply the Strategy design pattern.

· Retest.

Thirteenth and Fourteenth refactoring: (repeat, for frequent rental points)

· Remember how we handled quacking behavior the same way we handled flying behavior?

· Yes, it was handled using the Strategy design pattern too.

· Same thing applies to frequent rental points. A movie has frequent-rental-point behavior!

· As with charge calculations, move the frequent rental point calculations to Movie then apply the Strategy design pattern.

· Retest.

Nicely done, grasshoppers! Now, reflect on what you have learned.

To Turn In

Oh, and don’t forget to give me your source code.
