Comparison of Java and C#, for the student Java programmer

Pete Sanderson

Updated 19 April 2007
Imperative Statements

The syntax and semantics of assignments, IF statements, FOR loops, WHILE loops, and DO-WHILE loops is the same for both languages.

C# has a FOREACH loop for iterating over a collection or array. In this example the C# syntax is shown in bold with the Java 5.0 syntax following as a comment.
// C# foreach

public double sum(double[] readings) {

 double sum = 0.0;

 foreach (double reading in readings) { // for (double reading : readings)
 sum += reading;

 }

 return sum;

}
The comment (// and /* */) and block ({ }) symbols are the same in both languages. Scoping rules for variables are the same too.

Console output

To output the string "Hello" to the system console, do

Java:
System.out.println("Hello");
C#:
System.Console.WriteLine("Hello");
For C# library classes, method names start with an upper case letter. Typically, C# examples do not include “System.” because it is imported (more on this below).
Keyboard input in C# is also done through the Console object, e.g.
String name = System.Console.ReadLine();

Basic data types

C# has all the primitive data types (called value types) that Java does, and then some. The only spelling difference is Java's boolean is C#'s bool. In C#, String and string are the same thing.

Arrays

For your needs, arrays in C# look and work just like arrays in Java. Note the array length identifier (a property) in C# starts with upper-case (Length).

Commonly-used Methods

Many commonly-used methods from Java have the same name in C# except that the first letter is upper-case. Examples include Equals() and ToString().

Parameters

In Java, all parameters are pass by value. In C#, parameters are by default pass by value but there are other parameter passing mechanisms too. For now, just use pass by value.

Exceptions

The syntax for TRY-CATCH is the same in both languages. So is the use of throw to explicitly throw an exception. But C# does not have any "checked" exceptions so there is no requirement to use try-catch or a throws clause in the method header.

Object Orientation

Both are object-oriented and most of the syntax is the same, e.g.

public class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

}
This is a valid class definition in both Java and C#. In Java, this code must be stored in file Point.java. In C#, it would likely be saved in Point.cs, but the file name does not have to match the class name.

Object self-reference is done with keyword this in both languages.

Identifiers associated with a class, rather than an object, are declared with keyword static in both languages.

Method names start with an upper-case letter in C#, by convention.

Access Modifiers

Both have public, private, protected and default. C# has more. Both languages have the same meaning for public and private. In C#, the default is private. Modifier protected has different meanings in the two languages.

Extending classes and Implementing Interfaces

The concepts are the same in both languages but the syntax is slightly different.

// Java

public class Employee extends Person implements IDrone, ICog { }
//C#.
public class Employee : Person, IDrone, ICog { }
C# convention is to begin interface names with upper case I so they can be visually distinguished from a superclass name in the class declaration.

Related subtopics include:

· Abstract: Abstract classes and methods are declared the same way as in Java.
· Virtual methods: When you define a C# method, you can control whether or not it can be overridden in subclasses. If you place the keyword virtual just before the return type in the method signature, the method can be overridden. Otherwise it cannot.

· Overriding: When overriding an inherited virtual method or defining an inherited abstract method, you are required to place the keyword override just before the return type in the method signature.

· Overloading: You overload methods in C# just like in Java. Each definition of the method must have the same name but different return and parameter signatures. No keywords are involved.

· Superclass constructors and overridden methods can be invoked directly in C# using the keyword base as the object reference. The Java equivalent is super.

Main

In Java there is only one valid form. In C# there is more than one valid form (the parameter list may be empty and/or it may return int instead of void). Also the first letter is upper case. The access modifier (e.g. public) is ignored.
//Java

public static void main(String[] args) { }

// C#

static void Main(String[] args) { }
Automatic boxing and unboxing

Both C# and Java do this. Variables and values of primitive types are automatically wrapped in objects of the corresponding wrapper class (boxing) when needed and wrapper class objects automatically extract primitive values when needed (unboxing).

Libraries and packages and the .NET Framework Class Library
Java organizes related classes into packages, and makes them available through the import statement.
C# organizes related classes into namespaces, and makes them available through the using statement.
//Java example packages:

import java.util.*;

import javax.swing.*;
//C# example namespaces:

using System;

using System.Collections;

using System.Windows.Forms;
The .NET Framework Class Library is equivalent to the Java API. Its primary web page is http://msdn2.microsoft.com/en-us/library/d11h6832(VS.71).aspx .

The Collection classes are in the System.Collections namespace . Classes there include ArrayList, SortedList, Stack, Queue, and Hashtable.

Many of the classes that in Java would be in the java.lang or java.util packages are in the System namespace.
Iterators

Iterators in C# are called Enumerators, and the corresponding interface is IEnumerator. A collection object gets one by calling getEnumerator().

Common GUI Components

GUI components in C# are called controls. Most of them are defined in the System.Windows.Forms namespace (package).

Here is a table of approximate equivalents

	C#
	Java

	Form
	JFrame

	Button
	JButton

	Label
	JLabel

	MessageBox
	JOptionPane

	Controls
	getContentPane()

Most of the controls such as buttons have the same name in C# as their java.awt (but not javax.swing) counterpart. As an example of the last item, if the variable app is a JFrame in Java or a Form in C#, the following two lines are equivalent:
Java:
app.getContentPane().add(new JLabel(“Fine, be that way.”));
C#:
app.Controls.add(new Label(“Fine, be that way.”));
Event Handling

In Java we use action listeners associated with GUI components. In C#, we use delegates associated with GUI controls.

The examples below will show you only the tip of the C# iceberg on the topic of events and delegates, but are enough to get you going with basic GUI programming. Most of these details are hidden from you when you use Visual Studio to create the GUI through drag-and-drop techniques.

Java example of action listener for a button:

public class ClickMe extends JFrame {

private JButton temptation;

public ClickMe() {

. . .

temptation = new JButton(“Click Me”);

temptation.addActionListener(new ButtonListener());

this.getContentPane().add(temptation);

. . .

}

class ButtonListener implements ActionListener {

public void actionPerformed(ActionEvent e) {

temptation.setText(“Ouch!”);

}

}
}
The equivalent code in C#:

public class ClickMe : Form {

private Button temptation;

public ClickMe() {

. . .

temptation = new Button();

temptation.Text = “Click Me”;

temptation.Click += new EventHandler(ButtonClicked);

this.Controls.add(temptation);

. . .

}

public void ButtonClicked(Object source, EventArgs e) {

temptation.Text = “Ouch!”;

}

}

The C# method ButtonClicked is an example of a delegate. EventHandler delegates are methods whose required signature is:
· public void

· two parameters pass by value

· first parameter is Object

· second parameter is EventArgs

In the C# example, Click is one of the pre-defined events for the Button class. It has the multicast delegate capability. This means a click event can invoke multiple delegates. Thus the use of “+=” to indicate this delegate is being added to a list. The GUI event handling arrangement for C# can be inspected automatically-generated code while creating a Windows application using Visual Studio.

Properties

A class in C# can define properties in addition to fields and methods. You should not need to define these for a class you are writing, but should be aware of how to use properties of the library class objects.

In short, the client syntax for using a property is the same as for using a field, but the semantics is that of calling a "get" (accessor) method or "set" (mutator) method for a private field. The defining class can define either or both of these methods.

// CLIENT VIEW:

// Box class has Length property with both get() and set()

Box a = new Box();

a.Length = 3.2; // "call the setter"

double len = a.Length; // "call the getter"

// CLASS VIEW:

class Box {

. . .

private int length;

public int Length {

get {

return length;

}

set {

length = value; // implicit setter parameter

}

}

. . .

}

Properties of GUI components and Visual Studio

When developing your Windows program using drag-and-drop in Visual Studio, the properties of GUI components will be shown in the lower-right hand part of the screen where you can change their values. If nothing else, you will want to change the default object names (e.g. button1, textbox1, etc).

PAGE
5

