
Project 2 background: Matrix Multiplication using Threads

Given two matrices, A and B, where matrix A contains M rows and K columns and matrix B

contains K rows and N columns, the matrix product of A and B is matrix C, where C contains M

rows and N columns. The entry in matrix C for row i, column j (Ci,j) is the sum of the products

of the elements for row i in matrix A and column j in matrix B. That is:

 Ci,j = ∑ 𝐾−1
𝑛=0 Ai,n * Bn,j

Example: if A is a 3-by-2 matrix and B is a 2-by-3 matrix, element C3,1 is the sum of A3,1 * B1,1

and A3,2 * B2,1.

For this project, you must calculate each element Ci,j in a separate worker thread. This will

involve creating M * N worker threads. The main – or parent – thread will create and initialize

the matrices A and B and create matrix C (dimensions determined by A and B dimensions),

which will hold the product of matrices A and B. These matrices will be created in the parent

and passed to each worker thread through its constructor’s parameter list.

Passing Parameters to each Thread

As stated above, the parent thread will create M * N worker threads, passing each worker the

values it needs to use in calculating the matrix product. Our approach is for the main thread to

create and initialize the matrices A and B and create matrix C. The main thread will then create

the worker threads, passing the three matrices, along with row i and column j, to the constructor

for each worker. Thus, the worker thread class (which implements Runnable) needs to have

instance variables for all five of them. The constructor will simply assign each parameter to its

corresponding instance variable. Then the run method will calculate the matrix product and

store it into the given row and column of result matrix C. There is nothing to return (run is void).

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the product contained in

matrix C. This requires the main thread to wait for all worker threads to finish before it can

output the matrix product. Example: If worker is a Thread object, then worker.join()

will suspend the main thread until worker has finished. Since you will have an array of worker

threads, the join() will have to be performed on all of them. Do this using a nested loop.

