
Composition and Inheritance
Chapter 10

Julia VanLandingham

Otterbein University

February 10, 2021

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 1 / 19

Two-Dimensional Layout Library

Elements are rectangles filled with text

Library provided factory method ”elem"

elem(s: String): Element

above, beside

Example

val column1 = elem("hello") above elem("***")

val column2 = elem("***") above elem("world")

column1 beside column2

hello ***

*** world

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 2 / 19

Abstract Classes

abstract class Element {
def contents: Array[String]

}

May have abstract members without implementation

Cannot be instantiated

Class has abstract modifier

Methods do not have abstract modifier

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 3 / 19

Uniform Access Principle

Client code should not be affected by a decision to implement an
attribute as a field or method

Example from Java

string.length() not string.length
array.length not array.length()

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 4 / 19

Parameterless Methods (and when to use them)

Methods can be defined without any parameter list

As opposed to with empty parantheses as empty-paren methods

Typical Conventions

Side effects → empty-paren

No side effects → parameterless

Example

"hello".length // no () because no side-effect

println() // better to not drop the ()

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 5 / 19

Extending Classes

class ArrayElement(conts: Array[String]) extends Element{
def contents: Array[String] = conts

}

Use the extends keyword to extend class Element

Scala implicitly assumes your class extends from scala.AnyRef

All members of the superclass are members of the subclass except...

Private members of the superclass

Members of the superclass with the same name as a member of the
subclass

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 6 / 19

Overriding Methods and Fields

Overridde a parameterless method with a field

values (fields, methods, packages, and singleton objects)
types (class and trait names)

Java

class CompilesFine {
private int f = 0;

public int f() { return 1; }
}

Scala

class WontCompile{
private var f=0

def f=1

}

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 7 / 19

Importance of Override

Helps catch errors like mispelling or incorrect parameters

Makes for safer system evolution

Override is...

Required for members that override a concrete member in a parent
class

Optional for members that implement abstract members with the same
name

Forbidden for members that do not override or implement some other
member in a base class

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 8 / 19

Parametric Fields

If you’re passing in a parameter just to be copied to a field,
something is wrong...

Use a parametric field instead
val, var, override, private, public, and protected are options

Before

class ArrayElement(conts: Array[String]) extends Element{
def contents: Array[String] = conts

}

After

class ArrayElement(

val contents: Array[String]

) extends Element

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 9 / 19

Pause

Let’s pause to put it all together...

class Cat{
val dangerous = false

}

class Tiger(

override val dangerous: Boolean,

private var age: Int

) extends Cat

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 10 / 19

More Extension

What if our superclass constructor takes a parameter?

class LineElement(s:String) extends ArrayElement(Array(s)){
override def width = s.length

override def height = 1

}

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 11 / 19

Polymorphism and Dynamic Binding

We can store any subclass into a variable of the superclass type

This is called subtyping polymorphism

Example

val e1: Element = new ArrayElement(Array("hello","world"))

val ae: ArrayElement = new LineElement("hello")

val e2: Element = ae

Variables and expressions are dynamically bound

Method implementation is determined at run time based on the actual
type of the object not the variable or expression

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 12 / 19

Final Members (A brief note)

Use the final modifier to prevent any class or member from being
overridden or subclassed

Example

final class ArrayElement extends Element{ ... }

elem.scala: 18: error: illegal inheritance from final

class ArrayElement

class LineElement extends ArrayElement {

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 13 / 19

Using Composition VS Inheritance

Generally prefer composition to inheritance

Ask yourself...

Does the inheritance relationship model an is-a relationship?
Do you expect clients to use the subclass type as a superclass type?

One of our inheritance relationships looks suspicious...

class LineElement(s: String) extends Element {
val contents = Array(s)

override def width = s.length

override def height = 1

}

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 14 / 19

Implementing above and toString

We will assume equal heights and widths for simplicity, see section
10.14 for more functionality

++ operator concatenates two arrays

def above(that: Element): Element =

new ArrayElement(this.contents ++ that.contents)

override def toString = contents mkString "\n"

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 15 / 19

Implementing beside

First pass...

def beside(that: Element): Element = {
val contents = new Array[String](this.contents.length)

for (i <- 0 until this.contents.length)

contents(i) = this.contents(i) + that.contents(i)

new ArrayElement(contents)

}

More functional style

new ArrayElement(

for (

(line1, line2) <- this.contents zip that.contents

) yield line1 + line2

)

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 16 / 19

Factory Method

Library is simpler for clients to understand

More opportunities to change library implementation without breaking
client code

Factory method will go inside an Element companion object

Import Element.elem inside Element so we can just call elem

Move the subclasses to private classes inside the companion object for
additional Final results on pages 200-201

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 17 / 19

Factory Object

object Element {
def elem(contents: Array[String]): Element =

new ArrayElement(contents)

def elem(line: String): Element =

new LineElement(line)

}

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 18 / 19

Questions?

Julia VanLandingham (Otterbein University) Composition and Inheritance February 10, 2021 19 / 19

