Intro to JavaScript, by comparison to Java

Java

JavaScript

Developed at Sun Microsystems, since taken over by Oracle

Developed at Netscape, now maintained by Mozilla

Originally called Oak

Originally called LiveScript

Compiled language, bytecode interpreted by JVM

Scripting language, interpreted in browser

Object-oriented

Object-oriented

Strongly typed Weakly typed

int length = 12; var length = 12;

String name = "Charles"; var name = "Charles"; // or 'Charles'
int[] years = { 1881, 1991, 2002 }s var years = [1881, 1991, 2002];
int year = years[2]; var year = years[2];

int numYears = years.length; var numYears = years.length;
Arithmetic operators: + - * / 3 44 —_ Arithmetic operators: same as Java

String operator: + String operator: same as Java

Relational operators: == 1= < <= > >= Relational operators: all of Java's plus === ==
Logical operators: && || ! Logical operators: same as Java

Bitoperators: & | ~ ~ << >> >>> Bit operators: same as Java

if (boolean expression) {
// true part

} else {
// false part

if (expression) {
// true part

} else {
// false part

Note: the condition is not required to be Boolean. It will be considered false if it
evaluatesto false, 0, null, the empty string, NaN, or undefined (var declared but
no value). Otherwise it is true. That does not mean the false values are == to each
other!

for (int i=0; i < 100; i++) {
}

for (var i=0; 1 < 100; i++) {
}

Note: there is no exact equivalent to the Java "for-each” loop (e.g. for (int yr
years) where years isan array or collection of integers). All arrays however have a
"forEach" method that can apply the supplied function to all elements of the array.

while (boolean expression) {

}

while (expression) {

}

Note: see IF for difference between expression and boolean expression.

do {
}

while (boolean expression);

do {
}

while (expression);

Note: see explanation of IF for difference between expression and
boolean expression.

switch (value) {
case 1:
break;
case 2:
break;
default:

Note: value is of an integer or (as of Java 7) String type.

switch (value) {
case 1:
break;
case 2:
break;
default:

System.out.println ("hi");

console.log ("hi") ;

Scope of variables

int year = 2015;
// more code

Variable year is accessible only from the point of declaration to the
end of the block in which it is declared. Except for non-private
instance variables, that is.

Scope of variables

var global = 0;

function func() {
var local = 1;
help = 2;

Variable global isdeclared outside of any function so is considered global and
accessible anywhere in the JavaScript program. Thisincludes other JavaScript files if
more than one is loaded.

Variable help is not declared at all, but it will be declared implicitly as global even
though it is first used inside a function. Dynamic scoping applies: helpisglobal but
cannot be referenced outside the function until the function is actually called. It is poor
practice to not declare variables! Java does not have the concept of global variables,
since all variables must be declared inside a class or method.

Variable 1ocal is accessible only within func, the function in which it is declared. But
itis accessible any time after defined until the function returns, even if it is defined
inside of a nested block within the function. This is not the case if defined within an
embedded function

Action is specified by methods that are defined within classes. They
are associated either with objects of that class (default) or with the
class itself (static).

double convertCtoF (double c) {
return c * 1.8 + 32;

}

volid exclaim(String s) {
String ex = s.toUpperCase() + "!";
System.out.println(ex);

Action is specified by functions. They can be standalone or associated with objects. The
latter are called methods.

The examples below are functions, not methods. Since Java does not have functions,
these are not the exact equivalent of the Java code. But they give you a sense of the
syntax.

function convertCtoF(c) {
return ¢ * 1.8 + 32;

}

function exclaim(s) {
var ex = s.toUpperCase() + "!I";
console.log (ex);

Java has anonymous classes, defined in-line. It did not have
anonymous methods until Java 8.

this.addActionListener (new ActionlListener () {
public void actionPerformed (ActionEvent e)
System.out.println (“Help me”);

{

No

})

Example of an anonymous class that implements the
ActionListener interface.

Anonymous function. Function itself does not have a name but is assigned to a
variable. The variable’s name becomes the de facto function name for calling it later.

var message = function() {
alert ("Help me");

message () ;

Self-executing anonymous function

Java does not have this since it is not a scripting language.

Self-executing anonymous function. Atrue anonymous function that will be invoked
immediately instead of waiting to be called.

(function () {
alert ("Help me");
RO

Defining a class, creating and using an object

class Temperature {

private double temp = 0.0;

public setTemp (double c) {
this.temp = c;

}

public double getTemp () {
return this.temp;

}

public double toF() {
return this.temp * 1.8 + 32;

(object is created and used in another class...)
Temperature t = new Temperature () ;
t.setTemp (10) ;

System.out.println (t.toF());

Defining and using an object

var t = {

temp: O,

setTemp: function(c) {
this.temp = c;

W r

getTemp: function() {
return this.temp;

by

toF: function() {
return this.temp * 1.8 + 32;

s
// use the methods

t.setTemp (10) ;
console.log (t.toF());

Alternative technique for defining this object (no Java equivalent)

var t = new Object();

t.temp = 0;

t.setTemp = function(c) {
this.temp=c;

}i

t.getTemp = function() {
return this.temp;

}i

t.toF = function() {
return this.temp * 1.8 + 32;

}i

// use the methods
t.setTemp (10) ;
console.log (t.toF());

Yes, this code creates an object that has no attributes, then the properties and methods
mﬂmmaamaa<3mziom=<_4:m<om:m503m1m30<maQ<:m3:5=<Cm5mﬁ:mam5Hm
keyword,e.g. delete t.getTemp;

Defining a class, creating and using an object. Same as above,
repeated here for side-by-side comparison.

class Temperature |

private double temp = 0.0;

public setTemp (double c) {
this.temp = c¢;

}

public double getTemp () {
return this.temp;

}

public double toF () {
return this.temp * 1.8 + 32;

(object is created and used in another class...)
Temperature t = new Temperature();
t.setTemp (10) ;
System.out.println(t.toF());

A technique for defining something akin to a class. The "constructor" function
Temperature is the template

function Temperature() {
this.temp = 0.0;
this.setTemp = function(c) {

this.temp = c¢;

i

this.getTemp function () {
return this.temp;

Il

i
this.toF = function() {
return this.temp * 1.8 + 32;

}i

// Create object and use methods
var t = new Temperature();
t.setTemp (10) ;

console.log (t.toF());

Yet another technique for defining something akin to a class. This is not in the Duckett
book. It is a slight variation on the first technique.

var temperature = function() {
var temp = 0.0;
return {
setTemp: function(c) {
temp=c;
by
getTemp: function() {
return temp;
}s
toF: function() {
return temp * 1.8 + 32;

}i
¥
// Create object and use methods
var t = new temperature();
t.setTemp (10) ;
console.log (t.toF());

Basic access to debugger and to web page HTML contents (DOM).

// Invoke browser’s debugger now. Can place this anywhere
debugger;

// Get the element whose id attribute is "year"
var yearElem = document.getElementById("year");
// Get its contents (between the tags)

var year = yearElem.innerHTML;

year++;

// Modify its contents

yearElem.innerHTML = year;

// Write directly to the document.

document.write ("Content courtesy of JavaScript");

document is a pre-defined object that refers to the internal HTML-element tree
representing the current web page. This is called the Document Object Model (DOM).
It has a lot of properties and methods, see p 126 for a few, chapter 5 for full coverage.

See https://developer.mozilla.org/en-US/docs/Web/JavaScript

for extensive online documentation on JavaScript

