(TOUGH OPTIONAL
PART)

COMPUTER LANGUAGES

programming systems that take care of such things fi

languages, or just computer languages.

janguages.

. between three and seven.

14

. ‘The original computer languages were sirppliﬁed ways
‘writing down the undermost small instructions of the ¢
puter, one by one. This is still very }'espect_ahle. But-w_h_g
such details do not matter in their particulars, we us

letting us think clearly about the instructions thﬁt"r_eal
need our attention. These systems are often called “high

Surprise! There are thousands of different comp’ﬁte

These are at least two dozen important comp_g_tg
" ‘languages; the experienced programmer generally know

HE HIGHER LANGUAGES
A computer iz, as we have seen, & device for following a
‘plan. This plan can be expressed in any number of Ways,
“provided that the computer is properly set up to recognize
and carrty out the siens of the plan. Computer languages
‘are simply these different ways of expressing plans, And
:there is no single standardized way.
The different computer languages arise from the
rofusion of things computers can de. Computers can do so
any things — pictures and music and printing and sor-
; not to mention numerical applications — and mara
think about it, the more different possible things yvou
iy want the computer to do.
There are many kinds of things people want done with
mputers, and many styles for doing them. Indeed, little
tonishes the newcomer as much as the complete
‘blankness of the computer, the fact thai i really can he
nade to do anything whatever that its elechronics wil
Jow.
But different people have different things in mind. Since
the very beginnings, many have used the computer for
rapid numerical calculation. Others use the computer prin-
pally for business accounting and for storing records of
siness transactions. Yet others see the computer as an
exiremely deft motion-picture toy.
All these people are right, no one is wrong. But with
these different emphases, and the natural variation of
man mentality, many different styles of programming,
d local rules of operation for programmers to follow,
ve come into being. By and by, using the computer for a
en range of problems, and in a certain style, gives rise to
new programming language. A’ computer language does
bjump out of the air. It is designed by semeone to be a

Each of the higher computer languages allows you, as a
e, to-program some particular range of problems, and- in
particular style. In part this is hecause each language

les a lot of details for you automatically, Today’s
ger programs call in dozens or thousands of littler
grams which have themselves been perfected — little

ams for putting things in alphabetical order, typing a
racter on a terminal, moving a picture on a screen, and

T E MAIN COMPUTER LANGUAGE

|6

thousands of other functons. These are called sub:
programs and are of various types. While you do not want
to have to create each of these subprograms, you want to he
able o use them. So you need 2 shorthand method of
telling the computer to carry out these little programs, and
of tying them together. And such a shorthand method is
computer language. .
Beginners are startled to learn what a lot of differeng
computing languages there are and what little agreement
about their merit among experts. Indeed, laymen com:
monly ask “how do you say in computer language?’ and
this has no general answer at all — because there aré sp
many. :) :
Just as the blind men misconstrue the elephant, and just
as different computer users see the computer differently;
different computer users likewise prefer differsnt
languages, because the different janguages are tied
people’s different ways of seeing and areas of concern ;
Paople get very uptight about compuiing languages; the
subject is as touchy as religion, if not more so. If you insul
a man’s favorite computer language, you cease to be his
friend. .
Indeed, there is no more emotional issue in the computer
feld than that of computer languages. While physica
violence rarely occurs, the levels of emotional commitmen
and rage to be seen when computer people discuss com
puter languages is truly awesome. Many hobbyists whi
have only learned BASIC tend to go through this stage
Since all they have seen are programs in BASIC, all the
can imagine is programs in BASIC, and thus ¢
naturally think computers can have no uses except thos
which are easily programmed in BASIC. And indeed t
get indignant, just like regular computer people, ta h
anyone say they might be missing something.
The most important subject for the computer begin
not electronics or mathematics; it is a subject that di
in any way exist thirty years ago. It is the subject of

puter languages.

. While this is not the place to get into computer
languages deeply, let’s at least do a rundown of some mair:
._areas. Because there are thousands of computer landuagc;;
there are ?‘150 many different ways of <:at:egorizinf; fi\:»r:;‘
This is a SIIQpla book, and the categorizatioﬁ we will m\a};A
fiere is 2 simple categorization. (It might startle qozn;
professionals.) o .

TRADITIONAL LANGUAGES

In lumping together the following as “traditional”
uages, I am taking & few liberties, but anybody who
_;r‘qmds is probably too mad to have gotten this far in the
book anyway. Traditional languages require the program—'
mer to figure out ahead of time the exact division of
memory to be used for each piece of information that needs
be stored or operated upon. One way or another thf;
programmer sets places aside for each kind or piece c;f in-
_foglmatlfon that wil} _be needed. (This is one 6f the main pit-
gaex?bﬁit;?e traditional languages, as it reduces their

Bgcause the first use of the computers were for arith-
me_tlcal and formula computations, it was natural that a
computer language should be developed which simplified
he programming of algebraic formulas. This language was
called lf‘,ORTRAN,. supposedly standing for “formula tran-
ition. Bgcause it was the first, it became standard. One
was a mlie-stqne; now it is a millstone. People learn ?t
_ ._becau-se it Is standard. It was originally designed for
_.hematlcal applications; but it is in most cases far in-
_fer_m_r for t.he.f;e purposes to APL (described later). But still
ey: go on teaching it in the universities. ' I

“Basic” is not a description, it's 2 name. Bssentially
BASIC is a simplified FORTRAN. The BASIC language,
ten, is not {as you might think) ianguage somshow in-
frinsic to computers, but a language which was created to
make programming quick and SRSY.

. The fact that BASIC is easy to use does not mean it is of-
ficient, and there are a lot of things that simply cannot he
ne in BASIC, Truly complex programs can be created in
BASIC only with the greatest difficulty. However, the new
computers being set up for home use all come with Basic,
and 50 ifs use is growing dramatically even while it limitat.
jons are felt ever more painfully by those concerned with
¢reating really versatile and complex programs.

By common consent the amateur warld is deeply com-
tted to BASIC; but there is no exact standard of what
BASIC is, and 50 there is plenty of room for improvement.
One possible hope is that the best eiements of LOGO {see
relow) could be slviy introduced to BASIC, until BASIC
omes more and more to have some of the power of LOGO.
One sort of superBASIC, called GRASS, may become
vailable soon for amateur machines.)

Spurred particularly by the efforts of Grace Hopper ag
the depariment of defense, a language was dewscafcl fop
husiness application, called COBOL (Common ‘%usme.‘s
oreintad Language). It has certain strengths, but is very in
flexible compared fo the lambda languages (describad
later). COBOL programmers are the coolies of the co.
puter field. :

ALGOL

Europs, mathematicians and scientists -who becams
disigxrbec} I:.}at the inﬂexibility of FORTRAN cr_eai-ec‘i__:
language capable of expressing (and thus programmmg).
much more elaborate and subtle types of prf}cedures. TI:ae
resulting language, ALGOL, i_s wxc%ely usad in other coun:
iries, and is standard even in this country as 2 way - of
writing down computing procedures so t.ha;t other programe
mers can use and understand them. This is because it has
no extraneous features, as doss FORTRAN.

pL/ T |
ing Language I) wag
The language PL/I (Programming La ')

' R ghly speaking, it is’g
developad as an IBM product. Roughly
"+ combination of FORTRAN, COBOL and ALGOL: all
together, preserving the complications of each 'and- the
distinct philosophy of none. Many companies with IBM
computers use it, however.

BASIC

A group of determined young men at Dartmouth C-olli)ggdg
"in the early 60’s, created a computer system for av!ery ody
there to use, acting on the determination to make col
puters easy. For this they created a new'progfam?m__l
- language called BASIC, which was the Slm?ke%};{glc
* languages to learn at the outset. Since that time, : C
" has become the standard language of hobby and amate
%" computing, and indeed has caught on throughout the WO
" for many other purposes.

HE LAMBDA LANGUAGES

he second category of coraputer languages will be, in
opinion of the author, the Important ones for

orrow. They offer a power, and in some cases a sim-

ity, that has not been widely seen as yet. The Lambda

nguages are called that because they are based,

ewhere deep down, on something called the Lambda
ulus. But you don't have to know about that.

79

78

-Picture the situation iIf you will. Some extremely nright
gnd visibly ecceciric people, who have very little respect for
“pomputer programming as it is ordinarily dene, have heen
saying that somputer programming should be taught to
ery young children in a way that most computer program-
mers don’t understand. They have asserted that this
“scherne will make the children better programmers than
‘the professicnals; and they have sought funds to carry o
s teaching in schools where nobody knows what & com-
ter is at all. ’
sBuch is the computer fieid.
tAnother Lambda Language which may become im-
artant is TRAC language, invented by Calvin N. Mooers,
he same man who brought you the phrase “information
strieval.” (Mooers may sue me if | neglect to mention that
RAC is the trade mark and service mark of Rockford
search, Inc., 140 and one half Mt Auburn St, Cam-
bridge, MA 02138, He does make things difficult for those
o try to use it without his permission.)
TRAC Language will run on a much smaller computer;
ne authorized version of TRAC language runs in anly 8K
paces of the main hobby computer. TRAC Language is
ike LISP in that is uses many parentheses. Computer
people who have been turned off to LISP — and that seems
 be a lot of people — see the parentheses in TRAC and
ay, “Forget it". People who anly know BASIC often have
same reaction.
:But TRAC has certain special qualifications which
deally suit it for the very small computers that are now
coming so very widespread. It does not need large
mounts of memory, and it has important features for
ighly interactive systems. The ability to control user in-
so that if a user types the letter “F” he instantly sees,
ay,.a picture of a fish instead of the letter F — is an ex-
remely important feature for user-level systems of the
iture.
The last Lambda language we will mention here is
robably the most exciting. It is called SMALLTALK and
a5 devised by Alan Kay and his associates at Xerox Palo
Research Center. It's written up with neat pictures in
‘September 77 issue of the Scientific American, 231-

This mhysterious thing, the Lambda Caleulus, is Sj‘.mp! a
systematic way of tying things together; of fa%{mg t.h
results of ane operation and making then the starting poln
of another operation. The Lambda 1ar)g"uage.s, accor.dmgly?:
are extremely versatile, as the resulis of any opermtmn can
be used as the beginning of any new operation. I‘hus‘;‘ they.
have few of the restrictions that are so common In th
other languages. Space need not be exactly prearranged,
in the traditional languages. . - _

The Lambda languages were first used in obscire
research lahoratories, especially those where many Figixg}}
ful odd people work on what is referred to as artxflgaal-
telligence (to be discussed l'f.xte_r). T.he 'orzgmal Liambd
language is called LISP, and it is so Intricate and obsel
to most computer people that its practitioners have: come t
be seen as strange eccentrics — a pF:esthpod within th
priesthood. Yet there was a reason for t%us strange com
puter language, and all of its .fnghtemng parentheses
anything which can be done in any other comput
language can be done in LISP, while things can be don
LISP that cannot be done in any other compter langus

People versed in FORTRAN and COROL were alarm“
by LISP because it contained hundreds of pazjentheses. The
parenthesis is the most common character in IfISP. Th
annoys and offends those who den’t understand it, 'becaus_e
they naturaily think anything can be programmed in FO
TRAN and COBOI, which is not true. '

. But LISP ordinarily only runs on big machine

{although a group at MIT is endeavoring to build a LISP

machine small enoigh to be a personal qnmpuber.) e

There are, however, other languages which have all the
power of LISP and yet have certain cﬂ:her advantages.
important one of these is LOGO. Credted by Papert, Fe
zeig, and others, LOGQ is as simple to use as BASIC,
far more powerful. It may well become available for hob:
hyist computer machines in the near future. -_1__

A group at MIT, doing resgarch in LOGO as a too
teaching programming to children, asserts that imifwo
weeks of instruction, children w‘ho were. taught L GO
could program- circles around cItllldren of the same’ag

heing taught BASIC for comparison.
" But LOGO has so far been a washout for politi
U Teasons.

80

"

I'his language was created around Kay’s notion of a pa;
sonal computer, which he calls a “Dynabook.” (Apparentl
the term Dynabook simply means a computer that vou P
program with the SMALLTALK language) But Kay ajg
his associates have proceeded on the correct assumption
that it would be possible within a few years to build a cond
puter the size of a book that will run on batteries, hdve an’ .
elaborate graphics scréen, and sell for $400.

This prediction, which seemed outrageous to some pagpl
only a few years now seems firmly possible for the yea
1930, Whether the management of Xerox, deeply
trenched in a paper-oriented way of thinking, will un
derstand this development and brmg it to mdtket remain;
to be seen. SMALLTALK, anyway, is 2 Lambda langua
with numeraus exciting features. The parentheses are feiy
not the tangle of LISP. Instead, some commands of
languages consist of smiling faces and pointing han
amongst the other symbols and phrases.

Secondly, the tanguage is set up for the use of & final
detailed computer screen, of some half a millien dots, o
which the programmer may typewrite in numerou
typefaces. SMALLTALK may produce dazzling animatig
on the screen, Interacting with the user. {In anot
amazing form of interaction, Kay hooks SMALLTALK i
fo an organ keyboard coming out of Joudspeakers throug
the computer. At the same time, the SMALLTALK
program shows the notes on the screen, transcribed fi
his pressings of the keys.)

SMALLTALK procframs are sectioned into a numb
parts, called “processes,” which are independent entit
with a specia} kind of autonomy. Processes cannot interfer
with each other, and thus a program may be debugged; o
corrected, by sections. .

But numerous :copies of a process may exi

" SMALLTALK programs, amazingly, are much more il
real life” than most compuier programs. For instan R
you write a program to simulate traffic, you have one Gp
of the “car” process for each car on your highway.

IF you've done ordinary programming, vou know. h
odd that seems to most programmers. Yet it has a
tuitive simplicity. Thus SMALLTALK may turn out’
both the most powerful computing language and the idé

- language for beginners. (Let’s hope Xerox managémen
~.. gets moving on it.) :

TIFIR D T4 ¥T 3 TRDRWOTY T.7.% Ay . . - . o
OTHER LANGUAGES, ESPECIALLY APL com the outside. Tt is now affecting the rest of TRIAs

roduct line, as both scientific and business users work
ith it more and more.

JAPL is now available for parsonal computers, sspecially
the 8080, {Prices vary from $10 to $659 for different ver
ons.) One version sells for as little as ten dollars: but that
‘om Microsoft, a very respectable programming firm, it is
sgpected to sell for about $650.

“For many purposes, APL is slow and inefficient —
pecially for interactive graphies and music. But then
gain, David Steinbrook, a doughty young composer, is
using it s & music machine anyway, and mavbe he's onte
mething,

1BM sells a small computer that runs APL. This is one
-IBM’s best products. However, because of its cost (35000
‘to $15,000}, we will not consider # here as teing within the
range of personal computers.

There are many other languages; some have very spacifip’)
ranges of purpose, others are “general purpose” but reveg
a certain slant and certain special aptitudes. Foremos
among these other languages is APL, or “A Programming
Language,” devised by Xenneth Iverson. Iverson is a fiery
and upright figure, with the dignity and self-certitude of 3
Raymond Massey, or a religious leader.

Iverson claims that his language was always intended 4g
a way of writing things down, especially f
mathematicians and scientists, and felgns surprise that'i
turned out to be “a good way o drive a computer,” F§
Iverson'’s notation is a powerful and elegant system of ex
pressing mathematical meaning. Having detected, as 3
yvoung mathematician, that the notations of science and:
mathematics are really quite chaotic and irregular, he
began writing them out in a form which adhered to ceriaiy
basic rules. Working all this out, he gradually put togethe
a notational systermn of complete generality. :

No attempt will be made to give examples here. But Iv
son's language has become one of the most influential fo
ces in the world of scientific computing. APL is a work ¢
art, not unlike a beawtiful set of surgical tools, or a set g
matched gems. :

Iverson’s language permits the expression o
mathematical concepts from across the whole of Scienés
and statistics, thousands of different ideas and functiong
each resolved to a crisp and concise expression in this new,
common form. ;

The language requires learning new symbols, but a few
hours of time spent with an interactive terminal and: s
good tutor make one able to do astonishing things.

It is interesting to note that APL has come intoe use
almost entirely on a word-of-mouth basis. An ever-growing
fraternity of scientists (and, more recently, business users)
have discovered its power for a vast assemblage of pur
poses. : -_

The original APL program was created within IBM, pot
as a planned product, but as a private project at the
initiative of Iverson and his friends. But the language thén
caught on within IBM, becoming addictive to its users, and
became a part of the IBM product line by popular demand

84

OTHEE NON-STANDARD LANGUAGES

There are fifty or a hundred languages that ought to he
mentionad. But you can see there is no room for that here.
The different languages embody different ways of thinking,
different styles, different purposes. Many are variations of
ALGOL. (If you want to immerse yourself in the great
range of them, Jean Summet's monumental book on
programming languages is surprisingly readable.)

Suffice it to say that if you get serious about computer
programming, you can make computer languages your

ver-ending study. Of if you go to do research at the
_G_a_z_erkis Institute o f Tough Science, if there is such a
place, you will probably become a fan of their language and

no other.

{i.e,, on disk or tape),

dinky computers.

edit files with you. Such monitors come with
versions of BASIC.

questions are inescapable.

DEBUGGING

It is natural to make mistakes while you

and make fewer and fewer mistakes. However
anybody makes can be awfully big ones.
Mistakes in programming, also called bugs

mathematical cases, is to try the program’

and yet have hidden bugs that may make it

mistakes, perfects small pieces of it at a time.

the overall goal.
The complications of computer programm

86

THE PROGRAM YOU SEE MOST OF

Many computers, big and small, come with a progrs
that serves as a general butler of the computer system. §;
ting at the system, vou ask it to bring forth whateys
programs you want to use, or put away data in the close

This program butler is the operating system, or monity
They are good things to have. They are offered for man

Sometimes 2 language processor, such as ths BASI
processor, serves alse as a monitor, and will store data a

UNIVERSAL PROBLEMS OF SOFTWARE

“Software” means computer programs. Regardless i
your ares of interest or the language we use,

ming. Some people get better and better at programming

to find. Surprisingly, it is impossible to tell by tooking ats
computer program whether it will work or not. The on}
way to test a program, except in a small pnumber

works. Indeed, a program may work correctly at one tim

The problem gets worse as programs get bigger. Ot
dinarily a medium-sized program does not work the first
time. Or the second. Or the tenth. But the human creating

-this - program, struggling to find his omissions ‘atid

perfection of each piece, gets a sense of drawin

ghvious at the start. Henry Tropp, who has done 2 rese

arch
project on the history of computing, Interviewed the man
who discovered debugging, an English scientist, He wrote a

grogram for a computer of the nineteen-fiftles and
covered that the program did not run correctly. He
wund one of the errors, changed it, and discovered that the
rogram still did net run correctly. With sinking heart it
ceurted to him that he would speind the rest of his
cworking life “attempting to correct my own mistakes”
“The programmer subsists on - plecemeal
ometimes a little reward for a lot of effort, som
reat reward for a little effort, sometimes seemingly no
eward at all. Vet this Intermittency of reward, and the
are grand feeling you get when it works, seem to be
nough te keep great numbers of people hard at work in
gramming activity. (Behavioral psychologists are quick
o tell us that intermittent reward is the kind that
motes learning most effectively. But what may be more
mportant is the good feeling when the program works.

reward,
etitnes a

most am

aten

SO[’}'}_

CAN A THING BE DONE?Y

We get lots of ideas for things to do with computers; but
ot every idea is doable.
A very serious problem for the beginner is not knowing
what constitutes an undoable problem, or one which is just
© big. The beginner, successful with a small project,
ishes right on to attempt the impossible, rushing in where
etperts fear to tread. (But it is just through the fearlessness
of the newcomer — the kids who know no fear or modesty
hat many important innovations oceur,)

are program

, the mistake;

, are not ¢4

Q

and see

STRUCTURED PROGRAMMING

fail later on.

1 new set of rules is having a great impact. “Structured
programming” is a set of rules for writing programs that
are’easier to debug, cheaper to produce, easier to improve
ix up. Basically, structured programming means
iding the programs into hlocks of certain kinds, which
ehave and interrelate in certain ways. The rules are just a
hair too complex for this volume.
tructured programming has become sort of a religion in
ecent years, spread by its founder, Edsger Dijkstra of the

87

And with the
g closer to

ing were nat

Netherlands: by Harlan Mills within IB.M:; and many
others, notably Henry Ledgard, author (EE Programming
Proverbs, and Brain Kernighan, author of The Elements of
Programming Style, o o
Bgacic and some traditional computer languages, are dﬁ_‘,
Pl + - . ~ B -
ficult to use dccording to the rules of structured program:
ming. This is beginning to look like a strong argument .f_
the Lambda languapes, and certain others; they make if
possi-ble to get your programs running faster, and chagg_e
them more readily.

THE COMPLICATIONS G0 ON AND ON

Bince the 1950s,

gavernmentg,
The price of individual

cost tens of thousands of dollars, Pr
instead, in which case the mong
{}ery hlgh

Mankind is just learning what thg conseque;’;czs _ar}ql
complications of such plans of operation — detai es C.Or:n-
puter programs — really are. In the t‘went_‘,rtyea'x~ 1311.1;19
programming began, it has been studied extensively, &

guters, though, should have a

confusing and unknowable. As the amount of k1.1'o_
territory has increased, the amount of L{nknf}wn tery 1.tor‘.v
has increased even faster, Programming is still an art, not
a science. ‘] i

Each small step forward has revealed the lzr‘).menmt of
the unknown void beyond, just as astronomy in the .
Century has shrunk mankind faster and faster in an'u
thinkably large universe.

tograms may be sold in little wafers,

omiehow,

SOFTWARE QUAGMIRES

rograms may be sold as cbjects of value.

It is all too easy to keep trving to fix programs that weré
really very bad in the first place, and throw good m

se the quagmire that is thus created. (IBM, inde ﬁ'gl'y. They wil apme compu or will not mg
;[otoriouq for their cumbersome and sprawling softwat: . ! ,

but if the customer is locked in, IBM profits from th
ficiency of that software). ;
] Yet, like the Vietnam War, software can become ju
simph‘f on the grounds that too much has been investe
it already,)) -
1 It is best to take the advice offered in Prf)gram :
Proverbs by Henry Ledgard. “Don’t be afraid to-s
over.”

ok forward to panoramie
oad spectrum of personal uses,)
We discuss bel
it whatever ou
tely evolve a stable fashion by which develo

89

PROGRAMS AND PROGRAM PACKAGES

s

This has been the world of software. The It

g

_ compiter programs have been valuable
objects of sale. Programs have bean sold for wi

de varisties
of purposes — usually for business, but also for scienee

and

program packages has always
heen, of course, what the market would bear. It is not un.

gommon for a language processor to cost tens
‘dollars to a user organization. Application
for' specific business uses on targe computers

of thousands
PIOZTaAMS ~
~e CRT also
ograms may be rented
hly payments can be very,

€ oM~

drastic effect on the price
_ W nobody quite knows whar
=0 . . effect. What is going to happen with software in the
great deal has been learned w1th‘m iheé‘{;iljveiggutthzgis amateur market is o mystery, but we can expect the price to
programs work, and even more has been di b rice of good programs for per-
ional users may go up into the hundreds. {Thousands???)
Depending on what hardware becomes

popular,

or sticks like
hewing gum, or cubes, all plugging into the computer

“And some will be sold as they already are, on casseties
nd paper tape and disks. All these are merely forms of
age for the programs, the series of commands that run

e-computer. But because programming is hard work, the

The prineipal software for the personal market will con.

d if Tt fte ha(l Vvhai 5 worse, 0O . b in a gro ing a 01 styles. £
ang e * 4] a T i ther pe()ple haV o o P J!po;eso] ge A l E h
- H a“d W ran f

. integrated
llections of programs that fit together. (We may even

software, linked programs for a

ow the legal matter of software protection.
tcome there is to this legal issue, there will

pers of good
ams can receive financial reward for them.

" Fou can do anything with vcur'c‘bm”puger that you hava a
program for. If you buy a canned or prepared computer
gystem for some purpose, you do not have o learn ic
program, You are like the game-player and secretary men-
tioned earlier. Most personal computer applications are
going to use software somebody else has devsleped.
Mow, either the program exists, or it doesn’t But just
pecause there exist programs for a given purpose does not
mean they are any good.
¥ There is usually considerable leeway in how 2 program
can be designed, Programs that supposedly do the same
thing can be as different as hats, or dogs. Many writeups on
home computing in the popular presses might give the im-
p'essiom that the computer will do whatever you want, in
the style you expect, with someone else's program, This is
almost never {rue. You will have to adapt to another's idea
of what aspects are important, and how they are best ex-
plicated in the program. Even if 2 program like the one you
anted exists already, it probably is not in the style you
would like. And if it does not exist, you are going to have to
treate it. One’s personal fantasies, often so clear, tend not
to be what the other guy programmed. (Great disap-
pointments occur.) Bach person’s preferred style of use may
pe different from another’s.
Unless vou are the one who programs i, it will not be
focused as you would have it, nor as flexible in ways you
mjght want.
If you are going to use a pre-existing program, vou have
‘adapt to it. Otherwise you must program it yourself, or
dapt the pre-existing program. Thus you must learn how
to. program. The same goes for many of these new ap-
plications you are going to have t{o program yourself, or
have somebody do. “If you want a thing done right, do it
yourself.” The way you design it is crucial. Can it be made
sy to use? Making things easy for people is hard. But it
nt be done. You have to try hard enough, and be able to
sualize. (See the later section, “Virtuality.”

unterfeiting a dollar bill. Tn the dext few years, however,
it will become clear how muchk mosi people will depend on
programs that are developed by otliers, and how very much
" hetter some of them zare than others. This will affact
Cpeople’s thinking on the issue.

Programs are being sold 'on paper tape and.cassei%t
When‘loadéd, their contents slide into the otherwise .‘*mmx
spaces of the machine. When you're done, you obilterat-e.
the old program and use the computer’s memory §9r'
something else. |

However, programs will also be sold by some manufac.
turers as little plug in thingies. "Thin.gies” is & vague te_rm'
but these piug-in programs can come In any slze and shapg_
Some are now sold, not for computers but for calculators
in litile wafers the size of sugar cubss. o -
m'?heqe are ROMs « Read-Only Memories. _Theste 11_tﬂe
memories, filled with their programs, behave just like't
regular changeable remories of the computer when they
are temporarily toaded with a program. But the ROMs g

ermanent. o . :
’ There is no real logic distinction between one. type o
program and the other. But the Roms are more convenien
—_ and people are a perhaps less likely to copy the

rograms that are on them. ' . .
° Bgut this is not clear, Let us conslder_, ‘:at this pomt: :qtgg_
that can be taken to enforce the ownership and salainhty 0
programs.

INTELLECTUAL PROPRETY

Just as background, let us review the main ways that

United States law allows you to own something you come
“up with in your mind. A lot of peosle seem to think ¥ou can
patent or copyright anything. This is far from the sruth
o (Note that these laymen’s descriptions should not be
wtaken as a legal guide. Consult a lawyer for the sxact in-
formation - and the latest. Things are changing fast.)
“ The law provides several methods by which people are
granted certain rights to things they make up:

PATENTS

- The most famous of these is the patent, The patent is ex.
s pensive to get, may not be binding, and lasts for caly 17
“years. It protects your invention only in the narrowest
‘sense: with reference to certain specific features which
obody can copy without your permission.

The patent was established by Congress with the stated

intent of encouraging the commimnication of technical
ntowledge. For this reason it must describe fully what is
.Being covered. In return for this description, the govern-
ment gives the inventor exclusive rights to the invention —
“in the narrow sense covered by the wording on the actual
atent — for the 17 years.
“To patent something, you must search to see what is
Iready patented, or known, that is like it. If you -think
ours is original you submit a patent application. Your at-
orney argues with patent examiners for months or years,
hen maybe you get it and maybe you don't. ‘

PROGRAM PROTECTION

Most amateui; computers can presently use each oth.{arf
programs, By law, the owner may charge anyone wh
wants a copy of & program he has developed — but in f
one hobbyist may easily give a copy to another on thg \
This is the copyright problem. There has been a great'de
of program copying by hobbyists in the last couple of year
Nobody knows how much, and of course nob?dy — except
few troublemakers — is going around bragging that he h
done this, >
. It is easy to make a perfect copy of much of the softw
for little computers.) :

Herein lies the temptation.] .

Business users pay readily for software, since 16 18 an o
vious business expense.

92

thousand dollars — in part based upon the atiorney’s

plexity of your patent application. But such sums are

are,

some people think.

true status of the law will not really have been decided,
That is the way American law works.

PATENTING SOFTWARE AS HARDWARE

A number of patents have been issued on fictitious

patent documents but the claims are written to be actualiy
satisfied by ordinary computers holding a certain program.
Thus, since the description in the claims exactly applies

to a computer holding this program, the document could ba
said to have “patented the program' hy patenting all uges

- of it. No one knows how many of these things there are or.
whether they are valid. '

COPYRIGHT

Another very important form of intellectual property
copyright. This was originally instituted for the purpose
protecting an aythor’s right to publish his own literar
works from those publishers who might otherwise print’
without paying him.

For this reason, the copyright is granted to an enti
body of writing, — say & book or a play - almo
automatically, and no attempt need be made by the ar
at the outset to decide what, if anything, is unique abou
the work. That is left for the courts to decide if and when.
copyright holder sues someone else as infringing on hi
.. copyright. :

94

The expense of getfing a patent is generally several & Copyrights are cheap — the materizl ia suppoged to be

judgment of your willingness to pay, in part on the com. .o

usually ont of reach for people trving to start a business on
a shoestring, as most of the people interested in this matter

Purthermore, there is some considerable doubt as to.
whether patents can be obtained for computer programs.
The Supreme Court has ruled lately that programs by
themselves are not patentable, but that clears up less than

Until such cases have been further tried in the courts, thesiz

machines., These machines are described with care in the'

filed with the library of Congress, but in some coses is
. thought to be protected even without such filing, This will

£ e rendered more precise by the new copyright law scon 4o

= go into effect, which holds that an individual need not even
» file his work for copyright. It is automatic. Soon there need
not even De a copyright notice printed in it, & ritual ob-
servance formerly considered to be et the very core of
pyright. The old copyright law held for 26 vears and was
“fenewable for another 28; the new copyright will hold good
till 50 vears after the author's death.

For computer programs the copyright question is this:
siftce computer programs may generally be written on
" paper, and cousist of symbols, are they writings? Does the
| B6year protection of copyright, now granted almost
automatically to authors of novels, apply in equal force
and sense to the copyrighting of computer programming?
. Some think sa and some think not.

To those who believe in copyright, the same protection
‘applies by 2 very clear extension of the ex isting laws and
‘court decisions, Those who are not in faver of it point out
- that it was never intended to cover such things and
therefore should not.

. We take no position on these matters, They're tricky.

 TRADE SECRET

“ There is also the possibility of simply keeping software’s
ontent secret, which can be done in varicus ways. This
‘trade secret” is the final, and perhaps the strongest, way

‘protecting intellectual property rights. Many program-
mers claim to be able to figure out how any program works,
They probably can’t.

HOGGING THE MACHINE FOR TEMPORARY
_PROFIT

:Btandardization benefits you far more than you realize,
ecause it is actually an absence of impediment. Imagine if
alf the different states of the U.B.A. drove on the left, Or
d- different official spelling. Or used different sized
fypewriting paper, or used different television systems or
ad different rules about what advertising could be used

nthe air.
' 95

And so on. Forever. _

Stress the “forever,” because there is no limif to possible
impediments! it’s just that when things are standard, therg:
aren't any. ‘

“The reason standardization is good is that it makes
things easier, and so you can do more with less effort
{Those who argue that things should be made difficult fo
some moralistic reasen are not welcome in this book. Maj
their corridors mever end and their forks be teo heavy
1ife.} ;
Turthermore, any standard is far better than no sidn
dard. When it comes te important things, like which side to
drive on, or how to make home computers, a standard
crueial. One has come into being for home computers. I
called the $-100 standard, Designed as the interconnect
system of the Altaiz, it is the arrangement by which allth
compatible accessories manage i0 be compatible.

The manufacturers of the prebuilt computers, howeve
seem to want to monopolize their machines so that on}
programs they write will run. o

But these people should study the example of the Ala
— and of the original Philips cassette. Both are more’
less in the public domain, but by setting the standard an
allowing other malkers in, both manufacturers assu
much greater market than they could have had if they ha
kept a monopoly. o

The manufacturers who have broken away from th
100 standard have set things up. for themselves in the sho
run. Software for the PET, or the Compucolor, will be:sg
in permanent memory chips which are plugged into ithe
computer. Since the programs will not work on any
computers, these manufacturers have assured a’ capti

market for their software which other sellers are not 1
to invade. o
But this is self-defeating in the long run: it leads to
creased separatism, diversity, and incompatibility, :
computers, Users who realize this may search for machines
closer to a standard configuration.

. Trying to keep other people’s programs off the hardw

you manufacture is self-defeating. T

Trying to sell a machine that only takes your progra
like playing roulette at Monte Carlo: you may or ma
make it big. But letting everybody sell software, and tak
. a cut, is like being ¢the house at Monte Carlo..

(END OF TOUGH

