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A programming language possesses two fundamental features: syntax and semantics. Syntax
refers to the appearance of the well-formed programs of the language, and semantics refers to the
meanings of these programs. A language’s syntax can be formalized by a grammar or syntax chart;
such a formalization is found in the back of almost every language manual. A language’s semantics
should be formalized as well, so that it can appear in the language manual, too. This is the topic
of this chapter.

It is traditional for computer scientists to calculate the semantics of a program by using a test-
case input and tracing the program’s execution with a state table and flow chart. This is one form
of semantics, called operational semantics, but there are other forms of semantics that are not tied
to test cases and traces; we will study several such approaches.

Before we begin, we might ask, “What do we gain by formalizing the semantics of a programming
language?” Before we answer, we might consider the related question, “What was gained when
language syntax was formalized?” The formalization of syntax, via BNF rules, produced these
benefits:

e The syntax definition standardizes the official syntax of the language. This is crucial to users,
who require a guide to writing syntactically correct programs, and to implementors, who must
write a correct parser for the language’s compiler.

e The syntax definition permits a formal analysis of its properties, such as whether the definition

is LL(k), LR(k), or ambiguous.

e The syntax definition can be used as input to a compiler front-end generating tool, such as
YACC. In this way, the syntax definition is also the implementation of the front end of the
language’s compiler.

There are similar benefits to providing a formal semantics definition of a programming language:

e The semantics definition standardizes the official semantics of the language. This is cru-
cial to users, who require a guide to understanding the programs that they write, and to
implementors, who must write a correct code generator for the language’s compiler.

e The semantics definition permits a formal analysis of its properties, such as whether the
definition is strongly typed, block structured, or single threaded.

e The semantics definition can be used as input to a compiler back-end generating tool, such
as SIS or MESS [19, 22]. In this way, the semantics definition is also the implementation of
the back end of the language’s compiler.



Programming language syntax was studied intensively in the 1960’s and 1970’s, and presently
programming language semantics is undergoing similar intensive study. Unlike the acceptance of
BNF as a standard definition method for syntax, it appears unlikely that a single definition method
will take hold for semantics—semantics is harder to formalize than syntax, and it has a wider variety
of applications.

Semantics definition methods fall roughly into three groups:

e operational: the meaning of a well-formed program is the trace of computation steps that
results from processing the program’s input. Operational semantics is also called intensional
semantics, because the sequence of internal computation steps (the “intension”) is most im-
portant. For example, two differently coded programs that both compute factorial have
different operational semantics.

e denotational: the meaning of a well-formed program is a mathematical function from input
data to output data. The steps taken to calculate the output are unimportant; it is the relation
of input to output that matters. Denotational semantics is also called extensional semantics,
because only the “extension”—the visible relation between input and output—matters. Thus,
two differently coded versions of factorial have nonetheless the same denotational semantics.

e axiomatic: a meaning of a well-formed program is a logical proposition (a “specification”)
that states some property about the input and output. For example, the proposition Vz.x >
0 O dy.y = 2! is an axiomatic semantics of a factorial program.

1 A Survey of Semantics Methods

We survey the three semantic methods by applying each of them in turn to the world’s oldest and
simplest programming language, arithmetic. The syntax of our arithmetic language is:

E (= N | E1—|—E2

where N stands for the set of numerals {0,1,2,...}. Although this language has no notion of input
data and output data, it does contain the notion of computation, so it will be a useful example for
our initial case studies.

1.1 Operational Semantics

There are several versions of operational semantics for arithmetic. The one that you learned as
a child is called a term rewriting system. A term rewriting system uses rewriting rule schemes to
generate computation steps. There is just one rewriting rule scheme for arithmetic:

N; + Ny = N’ where N’ is the sum of the numerals Ny and Ny

This rule scheme states that the addition of two numerals is a computation step. One use of the
scheme would be to rewrite 1 + 2 to 3, that is, 1 +2 = 3. An operational semantics of a program
is the sequence of computation steps generated by the rewriting rule schemes. For example, an
operational semantics of the program (1 + 2) + (4 + 5) goes as follows:

(1+2)+(A+5) = 3+(A+5) = 3+9 = 12



The semantics shows the three computation steps that led to the answer 12. An intermediate
expression like 34+ (4 +5) is a “state,” so this operational semantics is a trace of the states of the
computation.

Perhaps you noticed that another legal semantics for the example is (14+2)4(445) = (14+2)4+9
= 349 = 12. The outcome is the same in both cases, but sometimes an operational semantics
must be forced to be deterministic, that is, a program has exactly one operational semantics.

A structural operational semantics is a term rewriting system plus a set of inference rules that
state precisely the context in which a computation step can be undertaken'. Say that we desire
left-to-right computation of arithmetic expressions. This is encoded as follows:

N; + Ny = N’ where N’ is the sum of N; and Ny

E1:>E/1 E2:>E/2
Ei+E; = Ej+E, N+E; = N+ E)

The first rule is as before; the second rule states, if the left operand of an addition expression can
be rewritten, then the addition expression should be revised to show this. The third rule is the
crucial one: if the right operand of an addition expression can be rewritten and the left operand is
a numeral (that is, it is completely evaluated), then the addition expression should be revised to
show this. Working together, the three rules force left-to-right evaluation of expressions.

Now, each computation step must be deduced by these rules. For our example, (1+2)4 (4+5),
we must deduce this initial computation step:

142 = 3
(1+2)+(4+5) = 3+(4+5)

Thus, the first step is (1+2)4(4+45) = 34 (4+5); note that we cannot deduce that (142)4(4+5) =
(142)4+9. (Try.) The next computation step is justified by this deduction:

445 =9
3+(4+5) = 349

The last deduction is simply 34+ 9 = 12, and we are finished. The example shows why the
semantics is “structural”: a computation step, like an addition, which affects a small part of the
overall program, is explicitly embedded into the structure of the overall program.

Operational semantics can also be used to represent internal data structures, like instruction
counters, storage vectors, and stacks. For example, say that our semantics of arithmetic must show
that a stack is used to hold intermediate results. So, we use a state of the form (s, ¢), where s is
the stack and ¢ is the arithmetic expression to be executed. A stack containing n items is written
vy U9 ... il v, o onel, where vy is the topmost item and nil marks the bottom of the stack. The
¢ component will be written as a stack as well. The initial state for an arithmetic expression, p, is
written (nil, p :: nil), and computation proceeds until the state appears as (v :: nil, nil); we say
that the result is v.

The semantics uses three rewriting rules:

(s, N:¢) :<> (N s, o

(s, E1 + Eqi¢) = (s, Ey 1 Eg it add :: ¢)
(Ng :: Ny s, add :: ¢) = (N’ s, ¢) where N is the sum of Ny and Ny

YA structural operational semantics is sometimes called a “small-step semantics,” because each computation step
is a small step towards the final answer.



The first rule says that a numeral is evaluated by pushing it on the top of the stack. The second rule
states that the addition of two expressions is decomposed into first evaluating the two expressions
and then adding them. The third rule removes the top two items from the stack and adds them.
Here is the previous example, repeated:

(nil, (142) 4 (44 5) 2 nil)

(nil, 1 —|— 2 :4+ 5 add o nil)

(nil, 1::2add 2445 add :

<1 ml 2 cadd 24+ 5 add :: l
(2:

3:

\/\/\/

mnil, add 2445 add :: nal
ml 445 add nil) = ... = (12 nil, nil)

sl

This form of operational semantics is sometimes called a state transition semantics, because
each rewriting rule operates upon the entire state. With a state transition semantics, there is of
course no need for structural operational semantics rules.

The three example semantics shown above are typical of operational semantics. When one
wishes to prove properties of an operational semantics definition, the standard proof technique is
induction on the length of the computation. That is, to prove that a property, P, holds for an
operational semantics, one must show that P holds for all possible computation sequences that can
be generated from the rewriting rules. For an arbitrary computation sequence, it suffices to show
that P holds no matter how long the computation runs. Therefore, one shows (i) P holds after zero
computation steps, that is, at the outset, and (7i) if P holds after n computation steps, it holds
after n + 1 steps. See Nielson and Nielson [27] for examples.

1.2 Denotational Semantics

A drawback of operational semantics is the emphasis it places upon state sequences. For the
arithmetic language, we were distracted by questions regarding order of evaluation of subphrases,
even though this issue is not central to arithmetic. Further, a key aspect of arithmetic, the property
that the meaning of an expression is built from the meanings of its subexpressions, was obscured
by the operational semantics.

Denotational semantics handles these issues by emphasizing that a program has an underlying
mathematical meaning that is independent of whatever computation strategy is taken to uncover
it. In the case of arithmetic, an expression like (1 +2) 4 (4+ 5) has the meaning, 12, and we need
not worry about the internal computation steps that were taken to discover this.

The assignment of meaning to programs is performed in a compositional manner: the meaning of
a phrase is built from the meanings of its subphrases. We can see this in the denotational semantics
of the arithmetic language: first, we note that meanings of arithmetic expressions are natural
numbers, Nat = {0, 1,2,...}, and we note that there is a binary function, plus : Nat x Nat — Nat,
which maps a pair of natural numbers to their sum.

The denotational semantics definition of arithmetic is simple and elegant:

£ : Fxpression — Nat
E[N] =
g[[El + EQ]] = plus(g[[El]], g[[EQ]])

The first line merely states that £ is the name of the function that maps arithmetic expressions
to their meanings. Since there are just two BNF constructions for expressions, £ is completely
defined by the two equational clauses. The interesting clause is the one for Eq + Eg; it says that the



meanings of E; and E; are combined compositionally by plus. Here is the denotational semantics
of our example program:

E1(1+2) + (44 5)] = plus(€[1 + 2], £[4 + 5])
= plus(plus(E]1], €[2]), plus(E]4], €[5]))
= plus(3,9) =12

One might read the above as follows: the meaning of (1+2) 4 (44 5) equals the meanings of 142
and 4 + 5 added together. Since the meaning of 1 4+ 2 is 3, and the meaning of 4 4+ 5 is 9, the
meaning of the overall expression is 12. This reading says nothing about order of evaluation or
run-time data structures—it emphasizes underlying mathematical meaning.

Here is an alternative way of understanding the semantics; write a set of simultaneous equations
based on the denotational definition:

E[1+2)+(4+5)] = plus(E[1+ 2], E[4+ 5])
1+ 2] plus(E[1], £[2])
E[4+5] = plus(E[4], E5])
1] =1 2] =2
E[4] = 4 EB]=5

Now, solve the equation set to discover that E[(1+2) + (44 5)] is 12.

Since denotational semantics states the meaning of a phrase in terms of the meanings of its
subphrases, its associated proof technique is structural induction. That is, to prove that a property,
P, holds for all programs in the language, one must show that the meaning of each construction in
the language has property PP. Therefore, one must show that each equational clause in the semantic
definition produces a meaning with property P. In the case that a clause refers to subphrases (e.g.,
E[E1 + E2]), one may assume that the meanings of the subphrases have property P. Again, see
Nielson and Nielson [27] for examples.

1.3 Natural Semantics

Recently, a semantics method has been proposed that is halfway between operational semantics and
denotational semantics; it is called natural semantics. Like structural operational semantics, natural
semantics shows the context in which a computation step occurs, and like denotational semantics,
natural semantics emphasizes that the computation of a phrase is built from the computations of
its subphrases.

A natural semantics is a set of inference rules, and a complete computation in natural semantics
is a single, large derivation. The natural semantics rules for the arithmetic language are:

N =N
Ei = n Es = ng
Ei+E, = m
Read a configuration of the form E = n as “E evaluates to n.” The rules resemble a denotational
semantics written in inference rule form; this is no accident—natural semantics can be viewed as a
denotational-semantics variant where the internal calculations of meaning are made explicit. These
internal calculations are seen in the natural semantics of our example expression:

l1=1 2=2 4=4 5b=15
(1+2) = 3 (4+5) =9
(14+2)+(4+5) = 12

where m is the sum of ny and ng
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Unlike denotational semantics, natural semantics does not claim that the meaning of a program
is necessarily “mathematical.” And unlike structural operational semantics, where a configuration
e = ¢ says that e transits to an intermediate state, ¢/, in natural semantics e = v asserts that
the final answer for e is v. For this reason, a natural semantics is sometimes called a “big-step
semantics.” An interesting drawback of natural semantics is that semantics derivations can be
drawn only for terminating programs.

The usual proof technique for proving properties of a natural semantics definition is induction

on the height of the derivation trees that are generated from the semantics. Once again, see Nielson
and Nielson [27].

1.4 Axlomatic Semantics

An axiomatic semantics produces properties of programs rather than meanings. The derivation of
these properties is done by an inference rule set that looks somewhat like a natural semantics.

As an example, say that we wish to calculate even-odd properties of programs in arithmetic
and our set of properties is simply {is_even,is_odd}. We can define an axiomatic semantics to do
this:

N :i2s_even if Nmod2 =0 N :ts_odd if Nmod2 =1

Ei:p1 Es:ps 1s_even if p1 = ps

Ei+E;:ps

The derivation of the even-odd property of our example program is:

15_odd otherwise

where p3 = {

1:4s_.0dd 2 :is_even 4 :is_even 5:is_odd
14+ 2: s 0dd 44+ 515 0dd
(1+2)+ (4+5) : is_even

In the usual case, the properties to be proved of programs are expressed in the language of pred-
icate logic; see Section 2.8. Also, axiomatic semantics has strong ties to the abstract interpretation
of denotational and natural semantics definitions [1, 6].

2 Semantics of Programming Languages

The semantics methods shine when they are applied to a realistic programming language—the
primary features of the programming language are proclaimed loudly, and subtle features receive
proper mention. Ambiguities and anomalies stand out like the proverbial sore thumb. In this
section, we give the semantics of a block-structured imperative language. Emphasis will be placed
upon the denotational semantics method, but excerpts from the other semantics formalisms will be
provided for comparison.

2.1 Language Syntax and Informal Semantics

The syntax of the programming language is presented in Figure 1. As stated in the figure, there
are four “levels” of syntax constructions in the language, and the topmost level, Program, is the
primary one?. Basically, the language is a while-loop language with local, nonrecursive procedure
definitions. For simplicity, variables are predeclared and there are just three of them—X, Y, and Z.
A program, C., operates as follows: an input number is read and assigned to X’s location. Then the

2The Identifier and Numeral sets are collections of words—terminal symbols—and not phrase-level “syntax con-
structions” in the sense of this chapter.



P € Program
D € Declaration
C € Command
E € Expression
I € Identifier = upper-case alphabetic strings
N € Numeral ={0,1,2, ..}
P == C.
D = procl =
C 2= 1:=E | C;;Cy | beginDinCend | calll | whileEdoCod
E (= N | Ei + Eq | Einot=E, | I

Figure 1: Language Syntax Rules

body, C, of the program is evaluated, and upon completion, the storage vector holds the results.
For example, this program computes n? for a positive input n; the result is found in Z’s location:

begin proc INCR = Z:= Z+X; Y:= Y+1
in Y:= 0; Z:= 0; while Y not=X do call INCR od end.

It is possible to write nonsense programs in the language; an example is: A:=0; call B. Such
programs have no meaning, and we will not attempt to give semantics to them. Nonsense programs
are trapped by a type checker, and an elegant way of defining a type checker is by a set of typing
rules for the programming language; See Chapter 140 for details [5].

2.2 Domains for Denotational Semantics

To give a denotational semantics to the sample language, we must state the sets of meanings, called
domains, that we use. Our imperative, block-structured language has two primary domains: (i) the
domain of storage vectors, called Store, and (ii) the domain of symbol tables, called Environment.
There are also secondary domains of booleans and natural numbers. The primary domains and
their operations are displayed in Figure 2.

The domains and operations deserve study. First, the Store domain states that a storage
vector is a triple. (Recall that programs have exactly three variables.) The operation lookup
extracts a value from the store, e.g., lookup(2,(1,3,5)) = 3, and update updates the store, e.g.,
update(2,6,(1,3,5)) = (1,6,5). Operation init_store creates a starting store. We examine check
momentarily.

The environment domain states that a symbol table is a list of identifier-value pairs. For
example, if variable X is the name of location 1, and P is the name of a procedure that is a “no-
op,” then the environment that holds this information would appear (X,1) :: (P,id) :: nil, where
id(s) = s. (Procedures will be discussed momentarily.) Operation find locates the binding for an
identifier in the environment, e.g., find(X, (X,1) :: (P,4d) :: nil) = 1, and bind adds a new binding,
e.g., bind(Y,2, (X,1) = (P,id) == nil) = (Y,2) =2 (X, 1) == (P, ed) = nel. Operation init_env creates an
environment to start the program.

In the next section, we will see that the job of a command, e.g., an assignment, is to update the
store. That is, the meaning of a command is a function that maps the current store to the updated
one. (That’s why a “no-op” command is the identity function, id(s) = s, where s € Store.)
But sometimes commands “loop,” and no updated store appears. We use the symbol, L, read



Store = {(n1,nq,n3) | n; € Nat, ¢ € 1..3}

lookup : {1,2,3} x Store — Nat
lookup(i, (n1, n2, n3)) = n;
update : {1,2,3} x Nat x Store — Store
update(1,n, (ny,ng, n3)) = (n, ng, n3)
update(2,n, (ny,ng, n3)) = (n1, n, n3)
update(3, n, (ny, ng, n3)) = (ny, ng, n)
it _store : Nat — Store
intt_store(n) = (n,0,0)
check : (Store — Store ) x Store; — Store; where Store; = Store U{L}
check(c,a) = if (a = L) then L else ¢(a)

Environment = (ldentifier x Denotable)*
where A* is a list of A-elements, a1 1 ag 2 ... v ay, inel,n >0
and Denotable = {1,2,3}U (Store — Store,)

find : Identifier x EFnvironment — Denotable
find(¢, nil) =0
find(i, (7', d) :: rest) = if (i = 4') then d else find(, rest)
bind : Identifier X Denotable x Environment — FEnvironment
bind(i,d,e) = (i,d) e
mnet_env @ Environment
intt_env = (X, 1) = (Y,2) 2 (Z,3) il

Figure 2: Semantic Domains

“bottom,” to stand for a looping store, and we use Store; to stand for the set of possible outputs
of commands. Therefore, the meaning of a command is a function of the form Store — Store;.

It is impossible to recover from looping, so if there is a command sequence, Cy;Cq, and Cy is
looping, then Cy cannot proceed. The check operation is used in the next subsection to watch for
this situation.

Finally, here are two commonly used notations. First, functions like id(s) = s are often refor-
matted to read id = As.s; in general, for f(a) = e, we write f = Aa.e, that is, we write the argument
to the function to the right of the equals sign. This is called lambda notation, and stems from the
lambda calculus, an elegant formal system for functions [29]. The notation f = Aa.e emphasizes
that (i) the function Aa.e is a value in its own right, and (7i) the function’s name is f.

Second, it is common to revise a function that takes multiple arguments, e.g., f(a,b) = e, so
that it takes the arguments one at a time: f = Aa.Ab.e. So, if the arity of f was A x B — C, its
new arity is A — (B — (). This reformatting trick is called currying, after Haskell Curry, one
of the developers of the lambda calculus.

2.3 Denotational Semantics of Programs

Figure 3 gives the denotational semantics of the programming language. Since the syntax of the
language has four levels, the semantics is organized into four levels of meaning. For each level,
we define a wvaluation function, which produces the meanings of constructions at that level. For



P : Program — Nat — Nat
PIC.] = An.C[C]init_env (init_store n)
D : Declaration — Environment — Environment
Dlprocl = C] = Ae.bind(1,C[C]e, €)
C:Command — FEnvironment — Store — Store|
C[l := E] = Xe.As.update(find(1, e), E[E]e s, s)
Cl[Cy; C2] = Ae.As.check(C[Csle, C[Cq]e s)
C[begin D in C end] = Ae. As.C[C](D[D]e)s
Clcalll] = Xe.find(1, €)
Clwhile E do Cod] = Ae.U;so w;
wg = As.L B
wiy1 = As.if E[E]e s then check(w;,C[Cle s) else s
£ : Bapression — Environment — Store — (Nat U Bool)
E[N] = Ae.As.N
E[E1 + E2] = AeAs.plus(E[E1]e s, E[Ez]e s)
E[E1not=E;] = Ae.As.notequals(E[E1]e s, E[Ez]e s)
EM] = Ae.As.lookup(find(l, e), s)

where

Figure 3: Denotational Semantics

example, at the Expression level, the constructions are mapped to their meanings by £.

What is the meaning of the expression, say, X+57 This would be £[X+5], and the meaning
depends on which location is named by X and what number is stored in that location. Therefore,
the meaning is dependent on the current value of the environment and the current value of the
store. So, if the current environment is eg = (P, As.s) :: (X, 1) = (Y,2) :: (Z,3) :: nel and the current
store is so = (2,0,0), then the meaning of X+5 is 7:

E[X+5]eq so = plus(E[X]eo so, E[5]eo so)
= plus(lookup(find(X, €o), s0), 5)
= plus(lookup(1, sq),5) = plus(2,5) =7

As this simple derivation shows, data structures like the symbol table and storage vector are
modelled by the environment and store arguments. This pattern is used throughout the semantics
definition.

As noted in the previous section, a command updates the store. Precisely stated, the valuation
function for commands is: C : Command — FEnvironment — Store — Store;. For example,
for eg and sy given above, we see that

ClZ:=X+5]eq so = update(find(Z, eg), E[X+5]eq S0, So) = update(3,7,s0) = (2,0,7)

But a crucial point about the meaning of the assignment is that it is a function upon stores. That
is, if we are uncertain of the current value of store, but we know that the environment for the
assignment is eg, then we can conclude

ClZ:=X+5]eq = As.update(3, plus(lookup(1,s),5),s)

That is, the assignment with environment eg is a function that updates a store at location 3.



Next, consider this example of a command sequence:

ClZ:=%X+5; call Pleg sop = check(C[call Pleg,C[Z:=X+5]eg so)
= check(find(P, ey), (2,0,7)) = check(As.s,(2,0,7))
= (Xs5.5)(2,0,7)=(2,0,7)

As noted in the earlier section, the check operation verifies that the first command in the se-
quence produces a proper output store; if so, the store is handed to the second command in the
sequence. Also, we see that the meaning of call P is the store updating function bound to P in
the environment.

Procedures are placed in the environment by declarations, as we see in this example: let ey
denote (X, 1) :: (Y,2) :: (Z,3) == nal:

C[ begin proc P = Y:=Y in Z:=X+5; call P end Je; so
= C[Z:=X+5; call P](D[proc P = Y:=Y Je1)so
= C[Z:=X+5; call P](bind(P,C[Y:=Y]ey, e1))s0
= C[Z:=X+5; call P](bind(P, As.update(2,lookup(2,s),s),€1))so
= C[Z:=X+5; call P]((P,id) :: e1)so

where id = As.update(2, lookup(2,s),s) = As.s (%)
= C[Z:=X+5; call Plegso = (2,0,7)

The equality marked by (%) is significant; we can assert that the function
As.update(2, lookup(2,s),s) is identical to As.s by appealing to the extensionality law of
mathematics: if two functions map identical arguments to identical answers, then the functions are
themselves identical. The extensionality law can be used here because in denotational semantics
the meanings of program phrases are mathematical—functions. In contrast, the extensionality law
cannot be used in operational semantics calculations.

Finally, we can combine our series of little examples into the semantics of a complete program:

Plbegin proc P = Y:=Y in Z:=X+5; call P end.]2
Y:=Y in Z:=X+5; call P end |init_env (init_store 2)
Y:=Y in Z:=X+5; call P end]e; s

= C[begin proc P
= C[begin proc P
= (2,0,7)

2.4 Semantics of the While Loop

The most difficult clause in the semantics definition is the one for the while-loop. Here is some
intuition: to produce an output store, the loop while E do C od must terminate after some finite
number of iterations. To measure this behavior, let while; E do C od be a loop that can iterate
at most ¢ times—if the loop runs more than ¢ iterations, it becomes exhausted, and its output is
1. For example, for input store (4,0,0), the loop while; Y not=Xdo Y:=Y+1 od can produce the
output store (4,4,0) only when k is greater than 4. (Otherwise, the output is L.)

It is easy to conclude that the family, while; E do C od, for ¢ > 0, can be written equivalently

as:
whileg E do Cod = “exhausted” (that is, its meaning is As.L)

while;1; EdoCod = if EEthenC; while; £ do C od else skip fi

When we refer back to Figure 3, we draw these conclusions:

C[whileg E do C od]e = wy
C[while;41 E do Cod]e = w;t1
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Since the behavior of a while loop must be the “union” of the behaviors of the while;-loops, we
conclude that C[while EdoCod]e = |J;5¢ w;. The semantic union operation is well defined because
each w; is a function from the set Store — Store, and a function can be represented as a set of
argument-answer pairs. (This is called the graph of the function.) So, ;> w; is the union of the
graphs of the w; functions®. -

The definition of C[while EdoCod] is succinct, but it is awkward to use in practice. An intuitive

way of defining the semantics is:

C[while Edo Cod]e = w
where w = As.if E[E]e s then check(w,C[C]e s) else s

The problem here is that the definition of w is circular, and circular definitions can be malformed.
Fortunately, this definition of w can be claimed to denote the function |J;~q w; because the following
equality holds: -

U w; = As.if E[E]e s then check(U w;, C[Cle s) else s

>0 >0

So, U;>o w; is a solution—a fized point—of the circular definition, and in fact it is the smallest
function that makes the equality hold. Therefore, it is the least fized point.

Typically, the denotational semantics of the while-loop is presented by the circular definition,
and the claim is then made that the circular definition stands for the least fixed point. This is called
fized-point semantics. We have omitted many technical details regarding fixed-point semantics;
these are available in several texts [12, 32, 36, 39].

2.5 Action Semantics

One disadvantage of denotational semantics is its dependence on functions to describe all forms of
computation. As a result, the denotational semantics of a large language is often too dense to read
and too low level to modify. Action semantics is an easy-to-read denotational-semantics variant
that rectifies these problems by using a family of standard operators to describe standard forms of
computation in standard languages [24].

In action semantics, the standard domains are called facets and are predefined for expressions
(the functional facet), for declarations (the declarative facet), and for commands (the imperative
facet). Each facet includes a set of standard operators for consuming values of the facet and
producing new ones. The operators are connected together by combinators (“pipes”), and the
resulting action semantics definition resembles a data flow program. For example, the semantics of
assignment reads as follows:

execute[l := E] = (find I and evaluate[E]) then update

One can naively read the semantics as an English sentence, but each word is an operator or a
combinator: execute is C; evaluate is &; find is a declarative facet operator; update is an imperative
facet operator; and and and then are combinators. The equation accepts as its inputs a declarative
facet argument (that is, an environment) and an imperative facet argument (that is, a store) and
pipes them to the operators. So, find consumes its declarative argument and produces a functional-
facet answer, and independently, evaluate[E] consumes declarative and imperative arguments and
produces a functional answer. The and combinator pairs these, and the then combinator transmits

#Several important technical details have been glossed over. First, pairs of the form (s, L) are ignored when the
union of the graphs is performed. Second, for all ¢ >> 0, the graph of w; is a subset of the graph of w;y1; this ensures
the union of the graphs is a function.
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eFD = ¢ €,sHC = &
e,sFbeginDinCend = s

ek procl = C = bind(l, (e,C),¢)

l=find(l,e) e,sFE =n e,sHC = 8 e,sFCy = 5

e,st1:=E = update(l, n, s) e,sHCp;Cy = &

(€,C") = find(l,e) €,stHC" = & e,sHFE = false
e,skcalll = & e,sFwhileEdoCod = s

e,sFE = true e,sFC = s e,sFwhileEdoCod = s”
e,sFwhile EdoCod = 5"

Figure 4: Natural Semantics

the pair to the update operator, which uses the pair and the imperative-facet argument to generate
a new imperative result.

The important aspects of an action semantics definition are (i) standard arguments, like envi-
ronments and stores, are implicit; (i) standard operators are used for standard computation steps
(e.g., find and update); and (7ii) combinators connect operators together seamlessly and pass values
implicitly. Lack of space prevents a closer examination of action semantics, but see Watt [38] for
an introduction.

2.6 The Natural Semantics of the Language

We can compare the denotational semantics of the imperative language with a natural semantics
formulation. The semantics of several constructions appear in Figure 4.

A command configuration has the form e,s = C = &', where e and s are the “inputs” to
command C and s’ is the “output.” To understand the inference rules, read them “bottom up.”
For example, the rule for I := E says, given the inputs e and s, one must first find the location, I,
bound to I and then calculate the output, n, for E. Finally, [ and n are used to update s, producing
the output.

The rules are denotational-like, but differences arise in several key constructions. First, the
semantics of a procedure declaration binds I not to a function but to an environment-command
pair called a closure. When procedure I is called, the closure is disassembled, and its text and
environment are executed. Since a natural semantics does not use function arguments, it is called
a first-order semantics. (Denotational semantics is sometimes called a higher-order semantics.)

Second, the while-loop rules are circular. The second rule states, in order to derive a while-loop
computation that terminates in s”, one must derive (i) the test, E is true, (ii) the body, C, outputs
s', and (iii) using e and s', one can derive a terminating while-loop computation that outputs s”.
The rule makes one feel that the while-loop is “running backwards” from its termination to its
starting point, but a complete derivation, like the one shown in Figure 5, shows that the iterations
of the loop can be read from the root to the leaves of the derivation tree.

One important aspect of the natural semantics definition is that derivations can be drawn only
for terminating computations. A nonterminating computation is equated with no computation at

all.
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let eg = (X,1) =2 (Y,2) 2 (Z,3) :: nal
so=(2,0,0), s =(2,1,0)
Eog =Y not=1, Cy=7Y:=Y+1
COO = while EO do CO od

2= find(Y,eq) e€o,50FY+1 = 1 eg,s51F Eg = false
60,80|—C0 = S1 €0, S1 FCopo = s1
€0, So FCoo = st

€0, So F Eg = true

Figure 5: Natural Semantics Derivation

et (ny + n2,s) = nz where ng is the sum of n; and ng
e (E,s) = E
eb(I:=E,s) = (I1:=Es)
et (l:=n,s) = update(l,n,s) where find(l,e) =1
et (Cy,s) = (C}, ) ek (Cy,s) = ¢
€|—<C1;C2,S> = < /1;C2,8/> €|—<C1;C2,S> = <C2,S/>
e (whileEdoCod,s) = (if EthenC; while E do Codelseskipfi,s)
et {calll,s) = (usee inC’,s) where find(l,e) = (¢/,C)

€ H{C,s) = (C)§) € H{Cs) = &
et (usee’inC,s) = (usee’ inC',¢) ek (usee'inC,s) = ¢
ek procl = C = bind(l, (e,C),e)
ebD = ¢

et (beginD inCend,s) = (usee inC,s)

Figure 6: Structural Operational Semantics

2.7 The Operational Semantics of the Language

A fragment of the structural operational semantics of the imperative language is presented in Figure
6.

For expressions, a computation step takes the form e - (E; s) = E’, where € is the environment,
E is the expression that is evaluated, s is the current store, and E' is E rewritten. In the case of a
command, C, a step appears e - (C,s) = (C',§'), because computation on C might also update
the store. If the computation step on C “uses up” the command, the step appears e - (C,s) = §'.

The rules in the figure are more tedious than those for a natural semantics, because the indi-
vidual computation steps must be defined, and the order in which the steps are undertaken must
also be defined. This complicates the rules for command composition, for example. On the other
hand, the rewriting rule for the while-loop merely decodes the loop as a conditional command.

The rules for procedure call are awkward; as with the natural semantics, a procedure, I, is
represented as a closure of the form (¢, C’). Since C' must execute with environment, €', which is
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{[E/1P}1 == E{P}

rPor {PC{Q} Q@ >5Q  {PIC{Q} {Q}C{R}
{PrC{Q} {P}C1; Co{R}
{PAECHQY {PA-EIC{Q} {PAEYC{P}
{P}if E then C; else C; £i{Q} {P}while Edo Cod{P A—E}

Figure 7: Axiomatic Semantics

different from the environment that exists where procedure I is called, the rewriting step for calll
must retain two environments; a new construct, use ¢’ in C’, remembers that C’ must use €’ (and
not e). A similar trick is used in beginD in C end.

Unlike a natural semantics definition, a computation can be written for a nonterminating pro-
gram; the computation is a state sequence of countably infinite length.

2.8 An Axiomatic Semantics of the Language

An axiomatic semantics uses properties of stores, rather than stores themselves. For example, we
might write the predicate X = 3AY > 0 to assert that the current value of the store contains 3 in X’s
location and a positive number in Y’s location. We write a configuration { P}C{@Q}, to assert that, if
predicate P holds true prior to evaluation of command C, then predicate ¢ holds upon termination
of C (if C does indeed terminate). For example, we can write {X = 3AY > 0}Y:=X+Y{X = 3AY > 3},
and indeed this holds true.

There are three ways of stating the semantics of a command in an axiomatic semantics:

e relational semantics: the meaning of C is the set of P, Q pairs for which {P}C{@} holds.

e postcondition semantics: the meaning of C is a function from an input predicate to an output
predicate. We write slp(P, C) = Q; this means that { P}C{@Q} holds, and for all @)’ such that
{P}C{Q’'} holds, it is the case that @ implies Q’. This is also called strongest liberal post-
condition semantics. When termination is demanded also of C, the name becomes strongest
postcondition semantics.

e precondition semantics: the meaning of C is a function from an output predicate to an input
predicate. We write wip(C,Q) = P; this means that {P}C{Q} holds, and for all P’ such
that {P'}C{@Q} holds, it is the case that P’ implies P. This is also called weakest liberal
precondition semantics. When termination is demanded also of C, the name becomes weakest
precondition semantics.

It is traditional to study relational semantics first, so we focus upon it here.

If the intended behavior of a program, C, is written as a pair of predicates, P, (), a relational
semantics can be used to verify that {P}C{@} holds. For example, we might wish to show that
an integer division subroutine, DIV, that takes inputs NUM and DEN and produces outputs QUO and
REM, has this behavior:

{~(DEN = 0)}DIV{QUO x DEN + REM = NUM}

A proof of the above claim is a derivation built with the rules in Figure 7.
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let Fpbe X =Y + 27
Pibe X=Y+(Z+1), P,be X=(L1)+(Z+1)
Eg = Ynot=0, Cp= Y:=Y-1;Z:=Z+1

{PQ}YZ=Y—1{P1} {Pl}ZZ=Z+1{P0}
{2} Co{ o}
{Po A Eo}Co{Po}
{Po}While EO do CO Od{PO A _|E0}

(Po/\Eo)DPQ Fy,DO F

Figure 8: Axiomatic Semantics Derivation

Figure 7 displays the rules for the primary command constructions. The rule for I := E states
that a property, P, about I will hold upon completion of the assignment if [E/I]P (that is, P
restated in terms of E) holds beforehand. [E/I]P stands for the substitution of phrase E for all
free occurrences of I in P. For example, {X = 3 AX+Y > 3}Y:=X+¥{X = 3A Y > 3} holds because
[X+Y/Y](X=3AY > 3) is X = 3 A X+Y > 3.

The second rule lets us weaken a result. For example, since (X=3AY > 0) O (X=3AX+Y > 3)
holds, we deduce that {X=3AY > 0}Y:=X+Y{X =3 AY > 3} holds.

The properties of command composition are defined in the expected way, by the third rule. The
fourth rule, for the if~command, makes a property, ), hold upon termination if ) holds regardless
of which arm of the conditional is evaluated. Note that each arm of the conditional uses information
about the result of the conditional’s test.

The most fascinating rule is the last one, for the while-loop. If we can show that a property,
P, is preserved by the body of the loop, then we can assert that no matter how long the loop
iterates, P must hold upon termination. P is called the loop invariant. The rule is an encoding of
a mathematical induction proof: to show that P holds upon completion of the loop, we must prove
(i) the basis case: P holds upon loop entry (that is, after zero iterations), and (ii) the induction
case: if P holds after ¢ iterations, then P holds after 7 + 1 iterations as well. Therefore, if the loop
terminates after some number, k, of iterations, the induction proof ensures that P holds.

Here is an example that shows the rules in action. We wish to verify that

{X=YAZ=0} while Y not=0 do Y:=Y-1; Z:=Z+1 od {X=Z}

holds true. The key to the proof is determining a loop invariant; here, a useful invariant
is X = Y + Z, because X = Y 4+ Z A =(Y not=0) implies X = Z. This leaves us {X =
Y+ ZAY not=0} Y:=Y-1; Z:=Z+1{X = Y + Z} to prove. We work backwards: the rule for
assignment gives us: {X = Y+ (Z 4+ 1)}Z:=Z+1{X = Y 4+ Z}, and we can also deduce that
{X= LD+ (Z+1)}Y:=Y-1{X = Y+ (Z+ 1)} holds. Since X = Y 4 Z A Y not=0 implies
X=(YL1)4+ (Z+ 1), we can assemble a complete derivation; it is given in Figure 8.

3 Applications of Semantics

Increasingly, language designers are using semantics definitions to formalize their creations. An
early example was the formalization of a large subset of Ada in denotational semantics [9]. The se-
mantics definition was then prototyped using Mosses’s SIS compiler generating system [22]. Scheme
is another widely-used language which has been given a standardized denotational semantics [31].
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Another notable example is the formalization of the complete Standard ML language in structural
operational semantics [20].

Perhaps the most significant application of semantics definitions has been to rapid prototyping—
the synthesis of an implementation for a newly defined language. Some prototyping systems are SIS
[22], PSI [26], MESS [19], Actress [4], and Typol [7]. The first two process denotational semantics,
the second two process action semantics, and the last handles natural semantics. SIS and Typol
are interpreter generators, that is, they interpret a source program with the semantics definition,
and PSI, MESS, and Actress are compiler generators, that is, compilers for the source language are
synthesized.

A major success of formal semantics is the analysis and synthesis of data-flow analysis and type-
inference algorithms from semantics definitions. This subject area, called abstract interpretation
[1, 6, 25], supplies precise techniques for analyzing semantics definitions, extracting properties from
the definitions, applying the properties to data flow and type inference, and proving the soundness
of the code-improvement transformations that result. Abstract interpretation provides the theory
that allows a compiler writer to prove the correctness of compilers.

Finally, axiomatic semantics is a long-standing fundamental technique for validating the cor-
rectness of computer code. Recent emphasis on large-scale and safety-critical systems has again
placed the spotlight on this technique. Current research on data type theory [5] suggests that a
marriage between the techniques of data-type checking and axiomatic semantics is not far in the
future.

4 Research Issues in Semantics

The techniques in this chapter have proved highly successful for defining, improving, and imple-
menting traditional, sequential programming languages. But new language paradigms present new
challenges to the semantics methods.

In the functional programming paradigm, a higher-order functional language can use functions
as arguments to other functions. This makes the language’s domains more complex than those
in Figure 2. Denotational semantics can be used to understand these complexities; an applied
mathematics called domain theory [12, 32] is used to formalize the domains with algebraic equations.
For example, the Value domain for a higher-order, Scheme-like language takes the form

Value = Nat + (Value — Value)

That is, legal values are numbers or functions on values. Of course, Cantor’s theorem makes it
impossible to find a set that satisfies this equation, but domain theory uses the concept of continuity
from topology to restrict the size of Value so that a solution can be found like that in Section 2.4:

. Vo=A{L
Value = lim;>o V;, where Vit i ]\}fat W (V; - V)
where V; =" V; denotes the topologically continuous functions on V;.

Challenging issues also arise in the object-oriented programming paradigm. Not only can objects
be parameters (“messages”) to other objects’ procedures (“methods”), but coercion laws based on
inheritance hierarchies allow controlled mismatches between actual and formal parameters. Just
like an integer actual parameter might be coerced to a floating-point formal parameter, we might
coerce a object that contains methods for addition, subtraction, and multiplication to be an actual
parameter to a method that expects a formal-parameter object with just addition and subtraction
methods. Carelessly defined coercions lead to unsound programs, so denotational and natural
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semantics have been used to formalize domain hierarchies and safe coercions for the inheritance
hierarchies [13].

Yet another challenging topic is parallelism and communication as it arises in the distributed
programming paradigm. Here, multiple processes run in parallel and synchronize through commu-
nication. Structural operational semantics has been adapted to formalize systems of processes and
to study the varieties of communication the processes might undertake. Indeed, new notational
systems have been developed specifically for this subject area [29].

Finally, a longstanding research topic is the relationship between the different forms of seman-
tic definitions. If one has, say, both a denotational semantics and an axiomatic semantics for a
programming language, in what sense do the semantics agree? Agreement is crucial, since a pro-
grammer might use the axiomatic semantics to reason about the properties of programs, whereas a
compiler writer might use the denotational semantics to implement the language. In mathematical
logic, one uses the concepts of soundness and completeness to relate a logic’s proof system to its
interpretation, and in semantics there are similar notions of soundness and adequacy to relate one
semantics to another [12, 28].

A standard example is proving the soundness of a structural operational semantics to a deno-
tational semantics: for program, P, and input, v, (P,v) = ¢’ in the operational semantics implies
P[P](v) = v' in the denotational semantics. Adequacy is a form of inverse: if P[P](v) = v/, and
v’ is a primitive value (e.g., an integer or boolean), then (P,v) = v'. There is a stronger form of
adequacy, called full abstraction [35], which has proved difficult to achieve for realistic languages,
although recent progress has been made [2].

5 Defining Terms

Action semantics: A variation of denotational semantics where low-level details are hidden by
use of modularized sets of operators and combinators.

Axiomatic semantics: The meaning of a program as a property or specification in logic.

Denotational semantics: The meaning of a program as a compositional definition of a mathe-
matical function from the program’s input data to its output data.

Fixed-point semantics: A denotational semantics where the meaning of a repetitive structure,
like a loop or recursive procedure, is expressed as the smallest mathematical function that
satisfies a recursively defined equation.

Loop invariant: In axiomatic semantics, a logical property of a while-loop that holds true no
matter how many iterations the loop executes.

Natural semantics: A hybrid of operational and denotational semantics that shows computation
steps performed in a compositional manner. Also known as a “big-step semantics.”

Operational semantics: The meaning of a program as calculation of a trace of its computation
steps on input data.

Strongest postcondition semantics: A variant of axiomatic semantics where a program and
an input property are mapped to the strongest proposition that holds true of the program’s
output.

Structural operational semantics: A variant of operational semantics where computation steps
are performed only within prespecified contexts. Also known as a “small-step semantics.”
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Weakest precondition semantics: A variant of axiomatic semantics where a program and an
output property are mapped to the weakest proposition that is necessary of the program’s
input to make the output property hold true.
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6 Further Information

The best starting point for further reading is the comparative semantics text of Nielson and Nielson
[27], which thoroughly develops the topics in this chapter. See also the texts by Slonneger and
Kurtz[34] and Watt[38].

Operational semantics has a long history, but good, modern introductions are Hennessey’s
text [14] and Plotkin’s report on structural operational semantics [30]. The principles of natural
semantics are documented by Kahn [18].

Mosses’s paper [23] is a useful introduction to denotational semantics; textbook-length treat-
ments include those by Schmidt [32], Stoy [36], Tennent [37], and Winskel [39]. Gunter’s text [12]
uses denotational-semantics-based mathematics to compare several of the semantics approaches,
and Schmidt’s text [33] shows the recent influences of data-type theory on denotational semantics.
Action semantics is surveyed by Watt [38] and defined by Mosses [24].

Of the many textbooks on axiomatic semantics, one might start with books by Dromey [10]
or Gries [11]; both emphasize precondition semantics, which is most effective at deriving correct
code. Apt’s paper [3] is an excellent description of the formal properties of relational semantics,
and Dikstra’s text [8] is the standard reference on precondition semantics. Hoare’s landmark papers
on relational semantics [15, 16] are worth reading as well. Many texts have been written on the
application of axiomatic semantics to systems development; two samples are by Jones [17] and
Morgan [21].

7 Acknowledgement

Brian Howard and Anindya Banerjee provided helpful criticism.

20



