
Programming Language SemanticsDavid A. SchmidtDepartment of Computing and Information SciencesKansas State UniversityOctober 24, 1995A programming language possesses two fundamental features: syntax and semantics. Syntaxrefers to the appearance of the well-formed programs of the language, and semantics refers to themeanings of these programs. A language's syntax can be formalized by a grammar or syntax chart;such a formalization is found in the back of almost every language manual. A language's semanticsshould be formalized as well, so that it can appear in the language manual, too. This is the topicof this chapter.It is traditional for computer scientists to calculate the semantics of a program by using a test-case input and tracing the program's execution with a state table and 
ow chart. This is one formof semantics, called operational semantics, but there are other forms of semantics that are not tiedto test cases and traces; we will study several such approaches.Before we begin, we might ask, \What do we gain by formalizing the semantics of a programminglanguage?" Before we answer, we might consider the related question, \What was gained whenlanguage syntax was formalized?" The formalization of syntax, via BNF rules, produced thesebene�ts:� The syntax de�nition standardizes the o�cial syntax of the language. This is crucial to users,who require a guide to writing syntactically correct programs, and to implementors, who mustwrite a correct parser for the language's compiler.� The syntax de�nition permits a formal analysis of its properties, such as whether the de�nitionis LL(k), LR(k), or ambiguous.� The syntax de�nition can be used as input to a compiler front-end generating tool, such asYACC. In this way, the syntax de�nition is also the implementation of the front end of thelanguage's compiler.There are similar bene�ts to providing a formal semantics de�nition of a programming language:� The semantics de�nition standardizes the o�cial semantics of the language. This is cru-cial to users, who require a guide to understanding the programs that they write, and toimplementors, who must write a correct code generator for the language's compiler.� The semantics de�nition permits a formal analysis of its properties, such as whether thede�nition is strongly typed, block structured, or single threaded.� The semantics de�nition can be used as input to a compiler back-end generating tool, suchas SIS or MESS [19, 22]. In this way, the semantics de�nition is also the implementation ofthe back end of the language's compiler. 1



Programming language syntax was studied intensively in the 1960's and 1970's, and presentlyprogramming language semantics is undergoing similar intensive study. Unlike the acceptance ofBNF as a standard de�nition method for syntax, it appears unlikely that a single de�nition methodwill take hold for semantics|semantics is harder to formalize than syntax, and it has a wider varietyof applications.Semantics de�nition methods fall roughly into three groups:� operational: the meaning of a well-formed program is the trace of computation steps thatresults from processing the program's input. Operational semantics is also called intensionalsemantics, because the sequence of internal computation steps (the \intension") is most im-portant. For example, two di�erently coded programs that both compute factorial havedi�erent operational semantics.� denotational: the meaning of a well-formed program is a mathematical function from inputdata to output data. The steps taken to calculate the output are unimportant; it is the relationof input to output that matters. Denotational semantics is also called extensional semantics,because only the \extension"|the visible relation between input and output|matters. Thus,two di�erently coded versions of factorial have nonetheless the same denotational semantics.� axiomatic: a meaning of a well-formed program is a logical proposition (a \speci�cation")that states some property about the input and output. For example, the proposition 8x:x �0 � 9y:y = x! is an axiomatic semantics of a factorial program.1 A Survey of Semantics MethodsWe survey the three semantic methods by applying each of them in turn to the world's oldest andsimplest programming language, arithmetic. The syntax of our arithmetic language is:E ::= N j E1 + E2where N stands for the set of numerals f0; 1; 2; :::g. Although this language has no notion of inputdata and output data, it does contain the notion of computation, so it will be a useful example forour initial case studies.1.1 Operational SemanticsThere are several versions of operational semantics for arithmetic. The one that you learned asa child is called a term rewriting system. A term rewriting system uses rewriting rule schemes togenerate computation steps. There is just one rewriting rule scheme for arithmetic:N1 +N2 ) N0 where N0 is the sum of the numerals N1 and N2This rule scheme states that the addition of two numerals is a computation step. One use of thescheme would be to rewrite 1+ 2 to 3, that is, 1+ 2 ) 3. An operational semantics of a programis the sequence of computation steps generated by the rewriting rule schemes. For example, anoperational semantics of the program (1 + 2) + (4 + 5) goes as follows:(1 + 2) + (4 + 5) ) 3 + (4 + 5) ) 3 + 9 ) 122



The semantics shows the three computation steps that led to the answer 12. An intermediateexpression like 3 + (4 + 5) is a \state," so this operational semantics is a trace of the states of thecomputation.Perhaps you noticed that another legal semantics for the example is (1+2)+(4+5) ) (1+2)+9) 3 + 9 ) 12. The outcome is the same in both cases, but sometimes an operational semanticsmust be forced to be deterministic, that is, a program has exactly one operational semantics.A structural operational semantics is a term rewriting system plus a set of inference rules thatstate precisely the context in which a computation step can be undertaken1. Say that we desireleft-to-right computation of arithmetic expressions. This is encoded as follows:N1 +N2 ) N0 where N0 is the sum of N1 and N2E1 ) E01E1 + E2 ) E01 + E2 E2 ) E02N+ E2 ) N+ E02The �rst rule is as before; the second rule states, if the left operand of an addition expression canbe rewritten, then the addition expression should be revised to show this. The third rule is thecrucial one: if the right operand of an addition expression can be rewritten and the left operand isa numeral (that is, it is completely evaluated), then the addition expression should be revised toshow this. Working together, the three rules force left-to-right evaluation of expressions.Now, each computation step must be deduced by these rules. For our example, (1+2)+(4+5),we must deduce this initial computation step:1 + 2 ) 3(1 + 2) + (4 + 5) ) 3 + (4 + 5)Thus, the �rst step is (1+2)+(4+5)) 3+(4+5); note that we cannot deduce that (1+2)+(4+5))(1 + 2) + 9. (Try.) The next computation step is justi�ed by this deduction:4 + 5 ) 93 + (4 + 5) ) 3 + 9The last deduction is simply 3 + 9 ) 12, and we are �nished. The example shows why thesemantics is \structural": a computation step, like an addition, which a�ects a small part of theoverall program, is explicitly embedded into the structure of the overall program.Operational semantics can also be used to represent internal data structures, like instructioncounters, storage vectors, and stacks. For example, say that our semantics of arithmetic must showthat a stack is used to hold intermediate results. So, we use a state of the form hs; ci, where s isthe stack and c is the arithmetic expression to be executed. A stack containing n items is writtenv1 :: v2 :: ::: :: vn :: nil, where v1 is the topmost item and nil marks the bottom of the stack. Thec component will be written as a stack as well. The initial state for an arithmetic expression, p, iswritten hnil; p :: nili, and computation proceeds until the state appears as hv :: nil; nili; we saythat the result is v.The semantics uses three rewriting rules:hs; N :: ci ) hN :: s; cihs; E1 + E2 :: ci ) hs; E1 :: E2 :: add :: cihN2 :: N1 :: s; add :: ci ) hN0 :: s; ci where N0 is the sum of N1 and N21A structural operational semantics is sometimes called a \small-step semantics," because each computation stepis a small step towards the �nal answer. 3



The �rst rule says that a numeral is evaluated by pushing it on the top of the stack. The second rulestates that the addition of two expressions is decomposed into �rst evaluating the two expressionsand then adding them. The third rule removes the top two items from the stack and adds them.Here is the previous example, repeated:hnil; (1 + 2) + (4 + 5) :: nili) hnil; 1 + 2 :: 4 + 5 :: add :: nili) hnil; 1 :: 2 :: add :: 4 + 5 :: add :: nili) h1 :: nil; 2 :: add :: 4 + 5 :: add :: nili) h2 :: 1 :: nil; add :: 4 + 5 :: add :: nili) h3 :: nil; 4 + 5 :: add :: nili ) ::: ) h12 :: nil; niliThis form of operational semantics is sometimes called a state transition semantics, becauseeach rewriting rule operates upon the entire state. With a state transition semantics, there is ofcourse no need for structural operational semantics rules.The three example semantics shown above are typical of operational semantics. When onewishes to prove properties of an operational semantics de�nition, the standard proof technique isinduction on the length of the computation. That is, to prove that a property, P , holds for anoperational semantics, one must show that P holds for all possible computation sequences that canbe generated from the rewriting rules. For an arbitrary computation sequence, it su�ces to showthat P holds no matter how long the computation runs. Therefore, one shows (i) P holds after zerocomputation steps, that is, at the outset, and (ii) if P holds after n computation steps, it holdsafter n + 1 steps. See Nielson and Nielson [27] for examples.1.2 Denotational SemanticsA drawback of operational semantics is the emphasis it places upon state sequences. For thearithmetic language, we were distracted by questions regarding order of evaluation of subphrases,even though this issue is not central to arithmetic. Further, a key aspect of arithmetic, the propertythat the meaning of an expression is built from the meanings of its subexpressions, was obscuredby the operational semantics.Denotational semantics handles these issues by emphasizing that a program has an underlyingmathematical meaning that is independent of whatever computation strategy is taken to uncoverit. In the case of arithmetic, an expression like (1 + 2) + (4+ 5) has the meaning, 12, and we neednot worry about the internal computation steps that were taken to discover this.The assignment of meaning to programs is performed in a compositionalmanner: the meaning ofa phrase is built from the meanings of its subphrases. We can see this in the denotational semanticsof the arithmetic language: �rst, we note that meanings of arithmetic expressions are naturalnumbers, Nat = f0; 1; 2; :::g, and we note that there is a binary function, plus : Nat�Nat ! Nat,which maps a pair of natural numbers to their sum.The denotational semantics de�nition of arithmetic is simple and elegant:E : Expression ! NatE [[N]] = NE [[E1 +E2]] = plus(E [[E1]]; E [[E2]])The �rst line merely states that E is the name of the function that maps arithmetic expressionsto their meanings. Since there are just two BNF constructions for expressions, E is completelyde�ned by the two equational clauses. The interesting clause is the one for E1+E2; it says that the4



meanings of E1 and E2 are combined compositionally by plus. Here is the denotational semanticsof our example program: E [[(1 + 2) + (4 + 5)]] = plus(E [[1 + 2]]; E [[4 + 5]])= plus(plus(E [[1]]; E [[2]]); plus(E [[4]]; E [[5]]))= plus(3; 9) = 12One might read the above as follows: the meaning of (1+ 2)+ (4+ 5) equals the meanings of 1+ 2and 4 + 5 added together. Since the meaning of 1 + 2 is 3, and the meaning of 4 + 5 is 9, themeaning of the overall expression is 12. This reading says nothing about order of evaluation orrun-time data structures|it emphasizes underlying mathematical meaning.Here is an alternative way of understanding the semantics; write a set of simultaneous equationsbased on the denotational de�nition:E [[(1 + 2) + (4 + 5)]] = plus(E [[1 + 2]]; E [[4 + 5]])E [[1 + 2]] = plus(E [[1]]; E [[2]])E [[4 + 5]] = plus(E [[4]]; E [[5]])E [[1]] = 1 E [[2]] = 2E [[4]] = 4 E [[5]] = 5Now, solve the equation set to discover that E [[(1 + 2) + (4 + 5)]] is 12.Since denotational semantics states the meaning of a phrase in terms of the meanings of itssubphrases, its associated proof technique is structural induction. That is, to prove that a property,P , holds for all programs in the language, one must show that the meaning of each construction inthe language has property P . Therefore, one must show that each equational clause in the semanticde�nition produces a meaning with property P . In the case that a clause refers to subphrases (e.g.,E [[E1 + E2]]), one may assume that the meanings of the subphrases have property P . Again, seeNielson and Nielson [27] for examples.1.3 Natural SemanticsRecently, a semantics method has been proposed that is halfway between operational semantics anddenotational semantics; it is called natural semantics. Like structural operational semantics, naturalsemantics shows the context in which a computation step occurs, and like denotational semantics,natural semantics emphasizes that the computation of a phrase is built from the computations ofits subphrases.A natural semantics is a set of inference rules, and a complete computation in natural semanticsis a single, large derivation. The natural semantics rules for the arithmetic language are:N ) NE1 ) n1 E2 ) n2E1 + E2 ) m where m is the sum of n1 and n2Read a con�guration of the form E ) n as \E evaluates to n." The rules resemble a denotationalsemantics written in inference rule form; this is no accident|natural semantics can be viewed as adenotational-semantics variant where the internal calculations of meaning are made explicit. Theseinternal calculations are seen in the natural semantics of our example expression:1 ) 1 2 ) 2(1 + 2) ) 3 4 ) 4 5 ) 5(4 + 5) ) 9(1 + 2) + (4 + 5) ) 125



Unlike denotational semantics, natural semantics does not claim that the meaning of a programis necessarily \mathematical." And unlike structural operational semantics, where a con�guratione ) e0 says that e transits to an intermediate state, e0, in natural semantics e ) v asserts thatthe �nal answer for e is v. For this reason, a natural semantics is sometimes called a \big-stepsemantics." An interesting drawback of natural semantics is that semantics derivations can bedrawn only for terminating programs.The usual proof technique for proving properties of a natural semantics de�nition is inductionon the height of the derivation trees that are generated from the semantics. Once again, see Nielsonand Nielson [27].1.4 Axiomatic SemanticsAn axiomatic semantics produces properties of programs rather than meanings. The derivation ofthese properties is done by an inference rule set that looks somewhat like a natural semantics.As an example, say that we wish to calculate even-odd properties of programs in arithmeticand our set of properties is simply fis even; is oddg. We can de�ne an axiomatic semantics to dothis: N : is even if Nmod 2 = 0 N : is odd if Nmod 2 = 1E1 : p1 E2 : p2E1 + E2 : p3 where p3 = ( is even if p1 = p2is odd otherwiseThe derivation of the even-odd property of our example program is:1 : is odd 2 : is even1 + 2 : is odd 4 : is even 5 : is odd4 + 5 : is odd(1 + 2) + (4 + 5) : is evenIn the usual case, the properties to be proved of programs are expressed in the language of pred-icate logic; see Section 2.8. Also, axiomatic semantics has strong ties to the abstract interpretationof denotational and natural semantics de�nitions [1, 6].2 Semantics of Programming LanguagesThe semantics methods shine when they are applied to a realistic programming language|theprimary features of the programming language are proclaimed loudly, and subtle features receiveproper mention. Ambiguities and anomalies stand out like the proverbial sore thumb. In thissection, we give the semantics of a block-structured imperative language. Emphasis will be placedupon the denotational semantics method, but excerpts from the other semantics formalisms will beprovided for comparison.2.1 Language Syntax and Informal SemanticsThe syntax of the programming language is presented in Figure 1. As stated in the �gure, thereare four \levels" of syntax constructions in the language, and the topmost level, Program, is theprimary one2. Basically, the language is a while-loop language with local, nonrecursive procedurede�nitions. For simplicity, variables are predeclared and there are just three of them|X, Y, and Z.A program, C:, operates as follows: an input number is read and assigned to X's location. Then the2The Identi�er and Numeral sets are collections of words|terminal symbols|and not phrase-level \syntax con-structions" in the sense of this chapter. 6



P 2 ProgramD 2 DeclarationC 2 CommandE 2 ExpressionI 2 Identi�er = upper-case alphabetic stringsN 2 Numeral = f 0, 1, 2, ... gP ::= C:D ::= proc I = CC ::= I := E j C1 ; C2 j beginD in C end j call I j whileE do C odE ::= N j E1 + E2 j E1 not=E2 j IFigure 1: Language Syntax Rulesbody, C, of the program is evaluated, and upon completion, the storage vector holds the results.For example, this program computes n2 for a positive input n; the result is found in Z's location:begin proc INCR = Z:= Z+X; Y:= Y+1in Y:= 0; Z:= 0; while Y not=X do call INCR od end.It is possible to write nonsense programs in the language; an example is: A:=0; call B. Suchprograms have no meaning, and we will not attempt to give semantics to them. Nonsense programsare trapped by a type checker, and an elegant way of de�ning a type checker is by a set of typingrules for the programming language; See Chapter 140 for details [5].2.2 Domains for Denotational SemanticsTo give a denotational semantics to the sample language, we must state the sets of meanings, calleddomains, that we use. Our imperative, block-structured language has two primary domains: (i) thedomain of storage vectors, called Store, and (ii) the domain of symbol tables, called Environment.There are also secondary domains of booleans and natural numbers. The primary domains andtheir operations are displayed in Figure 2.The domains and operations deserve study. First, the Store domain states that a storagevector is a triple. (Recall that programs have exactly three variables.) The operation lookupextracts a value from the store, e.g., lookup(2; h1; 3; 5i) = 3, and update updates the store, e.g.,update(2; 6; h1; 3; 5i) = h1; 6; 5i. Operation init store creates a starting store. We examine checkmomentarily.The environment domain states that a symbol table is a list of identi�er-value pairs. Forexample, if variable X is the name of location 1, and P is the name of a procedure that is a \no-op," then the environment that holds this information would appear (X; 1) :: (P; id) :: nil, whereid(s) = s. (Procedures will be discussed momentarily.) Operation �nd locates the binding for anidenti�er in the environment, e.g., �nd(X; (X; 1) :: (P; id) :: nil) = 1, and bind adds a new binding,e.g., bind(Y; 2; (X; 1) :: (P; id) :: nil) = (Y; 2) :: (X; 1) :: (P; id) :: nil. Operation init env creates anenvironment to start the program.In the next section, we will see that the job of a command, e.g., an assignment, is to update thestore. That is, the meaning of a command is a function that maps the current store to the updatedone. (That's why a \no-op" command is the identity function, id(s) = s, where s 2 Store.)But sometimes commands \loop," and no updated store appears. We use the symbol, ?, read7



Store = fhn1; n2; n3i j ni 2 Nat; i 2 1::3glookup : f1; 2; 3g� Store ! Natlookup(i; hn1; n2; n3i) = niupdate : f1; 2; 3g�Nat� Store ! Storeupdate(1; n; hn1; n2; n3i) = hn; n2; n3iupdate(2; n; hn1; n2; n3i) = hn1; n; n3iupdate(3; n; hn1; n2; n3i) = hn1; n2; niinit store : Nat ! Storeinit store(n) = hn; 0; 0icheck : (Store ! Store?)� Store? ! Store? where Store? = Store [ f?gcheck(c; a) = if (a = ?) then ? else c(a)Environment = (Identi�er �Denotable)�where A� is a list of A-elements, a1 :: a2 :: ::: :: an :: nil; n � 0and Denotable = f1; 2; 3g[ (Store ! Store?)�nd : Identi�er � Environment ! Denotable�nd(i; nil) = 0�nd(i; (i0; d) :: rest) = if (i = i0) then d else �nd(i; rest)bind : Identi�er �Denotable� Environment ! Environmentbind(i; d; e) = (i; d) :: einit env : Environmentinit env = (X; 1) :: (Y; 2) :: (Z; 3) :: nilFigure 2: Semantic Domains\bottom," to stand for a looping store, and we use Store? to stand for the set of possible outputsof commands. Therefore, the meaning of a command is a function of the form Store ! Store?.It is impossible to recover from looping, so if there is a command sequence, C1; C2, and C1 islooping, then C2 cannot proceed. The check operation is used in the next subsection to watch forthis situation.Finally, here are two commonly used notations. First, functions like id(s) = s are often refor-matted to read id = �s:s; in general, for f(a) = e, we write f = �a:e, that is, we write the argumentto the function to the right of the equals sign. This is called lambda notation, and stems from thelambda calculus, an elegant formal system for functions [29]. The notation f = �a:e emphasizesthat (i) the function �a:e is a value in its own right, and (ii) the function's name is f .Second, it is common to revise a function that takes multiple arguments, e.g., f(a; b) = e, sothat it takes the arguments one at a time: f = �a:�b:e. So, if the arity of f was A� B ! C, itsnew arity is A ! (B ! C). This reformatting trick is called currying, after Haskell Curry, oneof the developers of the lambda calculus.2.3 Denotational Semantics of ProgramsFigure 3 gives the denotational semantics of the programming language. Since the syntax of thelanguage has four levels, the semantics is organized into four levels of meaning. For each level,we de�ne a valuation function, which produces the meanings of constructions at that level. For8



P : Program ! Nat ! Nat?P [[C:]] = �n:C[[C]]init env (init store n)D : Declaration ! Environment ! EnvironmentD[[proc I = C]] = �e:bind(I; C[[C]]e; e)C : Command ! Environment ! Store ! Store?C[[I := E]] = �e:�s:update(�nd(I; e); E [[E]]e s; s)C[[C1 ; C2]] = �e:�s:check(C[[C2]]e; C[[C1]]e s)C[[beginD in C end]] = �e:�s:C[[C]](D[[D]]e)sC[[call I]] = �e:�nd(I; e)C[[while E doC od]] = �e:Si�0 wiwhere w0 = �s:?wi+1 = �s:if E [[E]]e s then check(wi; C[[C]]e s) else sE : Expression ! Environment ! Store ! (Nat[ Bool)E [[N]] = �e:�s:NE [[E1 + E2]] = �e:�s:plus(E [[E1]]e s; E [[E2]]e s)E [[E1 not=E2]] = �e:�s:notequals(E [[E1]]e s; E [[E2]]e s)E [[I]] = �e:�s:lookup(�nd(I; e); s)Figure 3: Denotational Semanticsexample, at the Expression level, the constructions are mapped to their meanings by E .What is the meaning of the expression, say, X+5? This would be E [[X+5]], and the meaningdepends on which location is named by X and what number is stored in that location. Therefore,the meaning is dependent on the current value of the environment and the current value of thestore. So, if the current environment is e0 = (P; �s:s) :: (X; 1) :: (Y; 2) :: (Z; 3) :: nil and the currentstore is s0 = h2; 0; 0i, then the meaning of X+5 is 7:E [[X+5]]e0 s0 = plus(E [[X]]e0 s0; E [[5]]e0 s0)= plus(lookup(�nd(X; e0); s0); 5)= plus(lookup(1; s0); 5) = plus(2; 5) = 7As this simple derivation shows, data structures like the symbol table and storage vector aremodelled by the environment and store arguments. This pattern is used throughout the semanticsde�nition.As noted in the previous section, a command updates the store. Precisely stated, the valuationfunction for commands is: C : Command ! Environment ! Store ! Store?. For example,for e0 and s0 given above, we see thatC[[Z:=X+5]]e0 s0 = update(�nd(Z; e0); E [[X+5]]e0 s0; s0) = update(3; 7; s0) = h2; 0; 7iBut a crucial point about the meaning of the assignment is that it is a function upon stores. Thatis, if we are uncertain of the current value of store, but we know that the environment for theassignment is e0, then we can concludeC[[Z:=X+5]]e0 = �s:update(3; plus(lookup(1; s); 5); s)That is, the assignment with environment e0 is a function that updates a store at location 3.9



Next, consider this example of a command sequence:C[[Z:=X+5; call P]]e0 s0 = check(C[[call P]]e0; C[[Z:=X+5]]e0 s0)= check(�nd(P; e0); h2; 0; 7i) = check(�s:s; h2; 0; 7i)= (�s:s)h2; 0; 7i= h2; 0; 7iAs noted in the earlier section, the check operation veri�es that the �rst command in the se-quence produces a proper output store; if so, the store is handed to the second command in thesequence. Also, we see that the meaning of call P is the store updating function bound to P inthe environment.Procedures are placed in the environment by declarations, as we see in this example: let e1denote (X; 1) :: (Y; 2) :: (Z; 3) :: nil:C[[ begin proc P = Y:=Y in Z:=X+5; call P end ]]e1 s0= C[[Z:=X+5; call P]](D[[proc P = Y:=Y ]]e1)s0= C[[Z:=X+5; call P]](bind(P; C[[Y:=Y]]e1; e1))s0= C[[Z:=X+5; call P]](bind(P; �s:update(2; lookup(2; s); s); e1))s0= C[[Z:=X+5; call P]]((P; id) :: e1)s0where id = �s:update(2; lookup(2; s); s) = �s:s (�)= C[[Z:=X+5; call P]]e0 s0 = h2; 0; 7iThe equality marked by (�) is signi�cant; we can assert that the function�s:update(2; lookup(2; s); s) is identical to �s:s by appealing to the extensionality law ofmathematics: if two functions map identical arguments to identical answers, then the functions arethemselves identical. The extensionality law can be used here because in denotational semanticsthe meanings of program phrases are mathematical|functions. In contrast, the extensionality lawcannot be used in operational semantics calculations.Finally, we can combine our series of little examples into the semantics of a complete program:P [[begin proc P = Y:=Y in Z:=X+5; call P end.]]2= C[[begin proc P = Y:=Y in Z:=X+5; call P end ]]init env (init store 2)= C[[begin proc P = Y:=Y in Z:=X+5; call P end]]e1 s0= h2; 0; 7i2.4 Semantics of the While LoopThe most di�cult clause in the semantics de�nition is the one for the while-loop. Here is someintuition: to produce an output store, the loop while E do C od must terminate after some �nitenumber of iterations. To measure this behavior, let whilei E do C od be a loop that can iterateat most i times|if the loop runs more than i iterations, it becomes exhausted, and its output is?. For example, for input store h4; 0; 0i, the loop whilek Y not=X do Y:=Y+1 od can produce theoutput store h4; 4; 0i only when k is greater than 4. (Otherwise, the output is ?.)It is easy to conclude that the family, whilei E do C od, for i � 0, can be written equivalentlyas: while0 E do C od = \exhausted" (that is, its meaning is �s:?)whilei+1 E do C od = if E thenC ; whilei E do C od else skip fiWhen we refer back to Figure 3, we draw these conclusions:C[[while0 E do C od]]e = w0C[[whilei+1 E do C od]]e = wi+110



Since the behavior of a while loop must be the \union" of the behaviors of the whilei-loops, weconclude that C[[whileEdoCod]]e = Si�0 wi. The semantic union operation is well de�ned becauseeach wi is a function from the set Store ! Store?, and a function can be represented as a set ofargument-answer pairs. (This is called the graph of the function.) So, Si�0wi is the union of thegraphs of the wi functions3.The de�nition of C[[whileEdoCod]] is succinct, but it is awkward to use in practice. An intuitiveway of de�ning the semantics is:C[[while E do C od]]e = wwhere w = �s:if E [[E]]e s then check(w; C[[C]]e s) else sThe problem here is that the de�nition of w is circular, and circular de�nitions can be malformed.Fortunately, this de�nition of w can be claimed to denote the function Si�0 wi because the followingequality holds: [i�0wi = �s:if E [[E]]e s then check([i�0wi; C[[C]]e s) else sSo, Si�0wi is a solution|a �xed point|of the circular de�nition, and in fact it is the smallestfunction that makes the equality hold. Therefore, it is the least �xed point.Typically, the denotational semantics of the while-loop is presented by the circular de�nition,and the claim is then made that the circular de�nition stands for the least �xed point. This is called�xed-point semantics. We have omitted many technical details regarding �xed-point semantics;these are available in several texts [12, 32, 36, 39].2.5 Action SemanticsOne disadvantage of denotational semantics is its dependence on functions to describe all forms ofcomputation. As a result, the denotational semantics of a large language is often too dense to readand too low level to modify. Action semantics is an easy-to-read denotational-semantics variantthat recti�es these problems by using a family of standard operators to describe standard forms ofcomputation in standard languages [24].In action semantics, the standard domains are called facets and are prede�ned for expressions(the functional facet), for declarations (the declarative facet), and for commands (the imperativefacet). Each facet includes a set of standard operators for consuming values of the facet andproducing new ones. The operators are connected together by combinators (\pipes"), and theresulting action semantics de�nition resembles a data 
ow program. For example, the semantics ofassignment reads as follows:execute[[I := E]] = (�nd I and evaluate[[E]]) then updateOne can naively read the semantics as an English sentence, but each word is an operator or acombinator: execute is C; evaluate is E ; �nd is a declarative facet operator; update is an imperativefacet operator; and and and then are combinators. The equation accepts as its inputs a declarativefacet argument (that is, an environment) and an imperative facet argument (that is, a store) andpipes them to the operators. So, �nd consumes its declarative argument and produces a functional-facet answer, and independently, evaluate[[E]] consumes declarative and imperative arguments andproduces a functional answer. The and combinator pairs these, and the then combinator transmits3Several important technical details have been glossed over. First, pairs of the form (s;?) are ignored when theunion of the graphs is performed. Second, for all i � 0, the graph of wi is a subset of the graph of wi+1; this ensuresthe union of the graphs is a function. 11



e ` proc I = C ) bind(I; (e;C); e) e ` D ) e0 e0; s ` C ) s0e; s ` beginD in C end ) s0l = �nd(I; e) e; s ` E ) ne; s ` I := E ) update(l; n; s) e; s ` C1 ) s0 e; s0 ` C2 ) s00e; s ` C1 ; C2 ) s00(e0; C 0) = �nd(I; e) e0; s ` C 0 ) s0e; s ` call I ) s0 e; s ` E ) falsee; s ` whileE do C od ) se; s ` E ) true e; s ` C ) s0 e; s0 ` whileE do C od ) s00e; s ` whileE do C od ) s00Figure 4: Natural Semanticsthe pair to the update operator, which uses the pair and the imperative-facet argument to generatea new imperative result.The important aspects of an action semantics de�nition are (i) standard arguments, like envi-ronments and stores, are implicit; (ii) standard operators are used for standard computation steps(e.g., �nd and update); and (iii) combinators connect operators together seamlessly and pass valuesimplicitly. Lack of space prevents a closer examination of action semantics, but see Watt [38] foran introduction.2.6 The Natural Semantics of the LanguageWe can compare the denotational semantics of the imperative language with a natural semanticsformulation. The semantics of several constructions appear in Figure 4.A command con�guration has the form e; s ` C ) s0, where e and s are the \inputs" tocommand C and s0 is the \output." To understand the inference rules, read them \bottom up."For example, the rule for I := E says, given the inputs e and s, one must �rst �nd the location, l,bound to I and then calculate the output, n, for E. Finally, l and n are used to update s, producingthe output.The rules are denotational-like, but di�erences arise in several key constructions. First, thesemantics of a procedure declaration binds I not to a function but to an environment-commandpair called a closure. When procedure I is called, the closure is disassembled, and its text andenvironment are executed. Since a natural semantics does not use function arguments, it is calleda �rst-order semantics. (Denotational semantics is sometimes called a higher-order semantics.)Second, the while-loop rules are circular. The second rule states, in order to derive a while-loopcomputation that terminates in s00, one must derive (i) the test, E is true, (ii) the body, C, outputss0, and (iii) using e and s0, one can derive a terminating while-loop computation that outputs s00.The rule makes one feel that the while-loop is \running backwards" from its termination to itsstarting point, but a complete derivation, like the one shown in Figure 5, shows that the iterationsof the loop can be read from the root to the leaves of the derivation tree.One important aspect of the natural semantics de�nition is that derivations can be drawn onlyfor terminating computations. A nonterminating computation is equated with no computation atall. 12



let e0 = (X; 1) :: (Y; 2) :: (Z; 3) :: nils0 = h2; 0; 0i; s1 = h2; 1; 0iE0 = Y not=1; C0 = Y:=Y+1C00 = whileE0 do C0 ode0; s0 ` E0 ) true 2 = �nd(Y; e0) e0; s0 ` Y+1 ) 1e0; s0 ` C0 ) s1 e0; s1 ` E0 ) falsee0; s1 ` C00 ) s1e0; s0 ` C00 ) s1Figure 5: Natural Semantics Derivatione ` hn1 + n2; si ) n3 where n3 is the sum of n1 and n2e ` hE; si ) E0e ` hI := E; si ) hI := E0; sie ` hI := n; si ) update(l; n; s) where �nd(I; e) = le ` hC1; si ) hC01; s0ie ` hC1 ; C2; si ) hC01 ; C2; s0i e ` hC1; si ) s0e ` hC1 ; C2; si ) hC2; s0ie ` hwhileE do C od; si ) hif E thenC ; while E do C od else skip fi; sie ` hcall I; si ) huse e0 in C0; si where �nd(I; e) = (e0;C0)e0 ` hC; si ) hC0; s0ie ` huse e0 in C; si ) huse e0 in C0; s0i e0 ` hC; si ) s0e ` huse e0 in C; si ) s0e ` proc I = C ) bind(I; (e;C); e)e ` D ) e0e ` hbeginD in C end; si ) huse e0 in C; siFigure 6: Structural Operational Semantics2.7 The Operational Semantics of the LanguageA fragment of the structural operational semantics of the imperative language is presented in Figure6. For expressions, a computation step takes the form e ` hE; si ) E0, where e is the environment,E is the expression that is evaluated, s is the current store, and E0 is E rewritten. In the case of acommand, C, a step appears e ` hC; si ) hC0; s0i, because computation on C might also updatethe store. If the computation step on C \uses up" the command, the step appears e ` hC; si ) s0.The rules in the �gure are more tedious than those for a natural semantics, because the indi-vidual computation steps must be de�ned, and the order in which the steps are undertaken mustalso be de�ned. This complicates the rules for command composition, for example. On the otherhand, the rewriting rule for the while-loop merely decodes the loop as a conditional command.The rules for procedure call are awkward; as with the natural semantics, a procedure, I, isrepresented as a closure of the form (e0;C0). Since C0 must execute with environment, e0, which is13



f[E=I]PgI := EfPgP � P 0 fP 0gCfQ0g Q0 � QfPgCfQg fPgC1fQg fQgC2fRgfPgC1 ; C2fRgfP ^ EgC1fQg fP ^ :EgC2fQgfPgif E thenC1 else C2 fifQg fP ^ EgCfPgfPgwhile E do C odfP ^ :EgFigure 7: Axiomatic Semanticsdi�erent from the environment that exists where procedure I is called, the rewriting step for call Imust retain two environments; a new construct, use e0 in C0, remembers that C0 must use e0 (andnot e). A similar trick is used in beginD in C end.Unlike a natural semantics de�nition, a computation can be written for a nonterminating pro-gram; the computation is a state sequence of countably in�nite length.2.8 An Axiomatic Semantics of the LanguageAn axiomatic semantics uses properties of stores, rather than stores themselves. For example, wemight write the predicate X = 3^Y > 0 to assert that the current value of the store contains 3 in X'slocation and a positive number in Y's location. We write a con�guration fPgCfQg, to assert that, ifpredicate P holds true prior to evaluation of command C, then predicate Q holds upon terminationof C (if C does indeed terminate). For example, we can write fX = 3^Y > 0gY:=X+YfX = 3^Y > 3g,and indeed this holds true.There are three ways of stating the semantics of a command in an axiomatic semantics:� relational semantics: the meaning of C is the set of P;Q pairs for which fPgCfQg holds.� postcondition semantics: the meaning of C is a function from an input predicate to an outputpredicate. We write slp(P;C) = Q; this means that fPgCfQg holds, and for all Q0 such thatfPgCfQ0g holds, it is the case that Q implies Q0. This is also called strongest liberal post-condition semantics. When termination is demanded also of C, the name becomes strongestpostcondition semantics.� precondition semantics: the meaning of C is a function from an output predicate to an inputpredicate. We write wlp(C; Q) = P ; this means that fPgCfQg holds, and for all P 0 suchthat fP 0gCfQg holds, it is the case that P 0 implies P . This is also called weakest liberalprecondition semantics. When termination is demanded also of C, the name becomes weakestprecondition semantics.It is traditional to study relational semantics �rst, so we focus upon it here.If the intended behavior of a program, C, is written as a pair of predicates, P;Q, a relationalsemantics can be used to verify that fPgCfQg holds. For example, we might wish to show thatan integer division subroutine, DIV, that takes inputs NUM and DEN and produces outputs QUO andREM, has this behavior: f:(DEN = 0)gDIVfQUO� DEN+ REM = NUMgA proof of the above claim is a derivation built with the rules in Figure 7.14



let P0 be X = Y + ZP1 be X = Y + (Z + 1); P2 be X = (Y � 1) + (Z + 1)E0 = Y not=0; C0 = Y:=Y-1;Z:=Z+1(P0 ^ E0) � P2 fP2gY:=Y-1fP1g fP1gZ:=Z+1fP0gfP2gC0fP0g P0 � P0fP0 ^ E0gC0fP0gfP0gwhileE0 doC0 odfP0 ^ :E0gFigure 8: Axiomatic Semantics DerivationFigure 7 displays the rules for the primary command constructions. The rule for I := E statesthat a property, P , about I will hold upon completion of the assignment if [E=I]P (that is, Prestated in terms of E) holds beforehand. [E=I]P stands for the substitution of phrase E for allfree occurrences of I in P . For example, fX = 3 ^ X+Y > 3gY:=X+YfX = 3 ^ Y > 3g holds because[X+Y=Y](X = 3^ Y > 3) is X = 3 ^ X+Y > 3.The second rule lets us weaken a result. For example, since (X = 3^Y > 0) � (X = 3^X+Y > 3)holds, we deduce that fX = 3 ^ Y > 0gY:=X+YfX = 3 ^ Y > 3g holds.The properties of command composition are de�ned in the expected way, by the third rule. Thefourth rule, for the if-command, makes a property, Q, hold upon termination if Q holds regardlessof which arm of the conditional is evaluated. Note that each arm of the conditional uses informationabout the result of the conditional's test.The most fascinating rule is the last one, for the while-loop. If we can show that a property,P , is preserved by the body of the loop, then we can assert that no matter how long the loopiterates, P must hold upon termination. P is called the loop invariant. The rule is an encoding ofa mathematical induction proof: to show that P holds upon completion of the loop, we must prove(i) the basis case: P holds upon loop entry (that is, after zero iterations), and (ii) the inductioncase: if P holds after i iterations, then P holds after i+ 1 iterations as well. Therefore, if the loopterminates after some number, k, of iterations, the induction proof ensures that P holds.Here is an example that shows the rules in action. We wish to verify thatfX = Y ^ Z = 0g while Y not=0 do Y:=Y-1; Z:=Z+1 od fX = Zgholds true. The key to the proof is determining a loop invariant; here, a useful invariantis X = Y + Z, because X = Y + Z ^ :(Y not=0) implies X = Z. This leaves us fX =Y + Z ^ Y not=0g Y:=Y-1; Z:=Z+1fX = Y + Zg to prove. We work backwards: the rule forassignment gives us: fX = Y + (Z + 1)gZ:=Z+1fX = Y + Zg, and we can also deduce thatfX = (Y � 1) + (Z + 1)gY:=Y-1fX = Y + (Z + 1)g holds. Since X = Y + Z ^ Y not=0 impliesX = (Y� 1) + (Z+ 1), we can assemble a complete derivation; it is given in Figure 8.3 Applications of SemanticsIncreasingly, language designers are using semantics de�nitions to formalize their creations. Anearly example was the formalization of a large subset of Ada in denotational semantics [9]. The se-mantics de�nition was then prototyped using Mosses's SIS compiler generating system [22]. Schemeis another widely-used language which has been given a standardized denotational semantics [31].15



Another notable example is the formalization of the complete Standard ML language in structuraloperational semantics [20].Perhaps the most signi�cant application of semantics de�nitions has been to rapid prototyping|the synthesis of an implementation for a newly de�ned language. Some prototyping systems are SIS[22], PSI [26], MESS [19], Actress [4], and Typol [7]. The �rst two process denotational semantics,the second two process action semantics, and the last handles natural semantics. SIS and Typolare interpreter generators, that is, they interpret a source program with the semantics de�nition,and PSI, MESS, and Actress are compiler generators, that is, compilers for the source language aresynthesized.A major success of formal semantics is the analysis and synthesis of data-
ow analysis and type-inference algorithms from semantics de�nitions. This subject area, called abstract interpretation[1, 6, 25], supplies precise techniques for analyzing semantics de�nitions, extracting properties fromthe de�nitions, applying the properties to data 
ow and type inference, and proving the soundnessof the code-improvement transformations that result. Abstract interpretation provides the theorythat allows a compiler writer to prove the correctness of compilers.Finally, axiomatic semantics is a long-standing fundamental technique for validating the cor-rectness of computer code. Recent emphasis on large-scale and safety-critical systems has againplaced the spotlight on this technique. Current research on data type theory [5] suggests that amarriage between the techniques of data-type checking and axiomatic semantics is not far in thefuture.4 Research Issues in SemanticsThe techniques in this chapter have proved highly successful for de�ning, improving, and imple-menting traditional, sequential programming languages. But new language paradigms present newchallenges to the semantics methods.In the functional programming paradigm, a higher-order functional language can use functionsas arguments to other functions. This makes the language's domains more complex than thosein Figure 2. Denotational semantics can be used to understand these complexities; an appliedmathematics called domain theory [12, 32] is used to formalize the domains with algebraic equations.For example, the Value domain for a higher-order, Scheme-like language takes the formValue = Nat + (Value ! Value)That is, legal values are numbers or functions on values. Of course, Cantor's theorem makes itimpossible to �nd a set that satis�es this equation, but domain theory uses the concept of continuityfrom topology to restrict the size of Value so that a solution can be found like that in Section 2.4:Value = limi�0 Vi; where V0 = f?gVi+1 = Nat ] (Vi !ctn Vi)where Vi !ctn Vi denotes the topologically continuous functions on Vi.Challenging issues also arise in the object-oriented programming paradigm. Not only can objectsbe parameters (\messages") to other objects' procedures (\methods"), but coercion laws based oninheritance hierarchies allow controlled mismatches between actual and formal parameters. Justlike an integer actual parameter might be coerced to a 
oating-point formal parameter, we mightcoerce a object that contains methods for addition, subtraction, and multiplication to be an actualparameter to a method that expects a formal-parameter object with just addition and subtractionmethods. Carelessly de�ned coercions lead to unsound programs, so denotational and natural16



semantics have been used to formalize domain hierarchies and safe coercions for the inheritancehierarchies [13].Yet another challenging topic is parallelism and communication as it arises in the distributedprogramming paradigm. Here, multiple processes run in parallel and synchronize through commu-nication. Structural operational semantics has been adapted to formalize systems of processes andto study the varieties of communication the processes might undertake. Indeed, new notationalsystems have been developed speci�cally for this subject area [29].Finally, a longstanding research topic is the relationship between the di�erent forms of seman-tic de�nitions. If one has, say, both a denotational semantics and an axiomatic semantics for aprogramming language, in what sense do the semantics agree? Agreement is crucial, since a pro-grammer might use the axiomatic semantics to reason about the properties of programs, whereas acompiler writer might use the denotational semantics to implement the language. In mathematicallogic, one uses the concepts of soundness and completeness to relate a logic's proof system to itsinterpretation, and in semantics there are similar notions of soundness and adequacy to relate onesemantics to another [12, 28].A standard example is proving the soundness of a structural operational semantics to a deno-tational semantics: for program, P, and input, v, (P; v) ) v0 in the operational semantics impliesP [[P ]](v) = v0 in the denotational semantics. Adequacy is a form of inverse: if P [[P ]](v) = v0, andv0 is a primitive value (e.g., an integer or boolean), then (P; v) ) v0. There is a stronger form ofadequacy, called full abstraction [35], which has proved di�cult to achieve for realistic languages,although recent progress has been made [2].5 De�ning TermsAction semantics: A variation of denotational semantics where low-level details are hidden byuse of modularized sets of operators and combinators.Axiomatic semantics: The meaning of a program as a property or speci�cation in logic.Denotational semantics: The meaning of a program as a compositional de�nition of a mathe-matical function from the program's input data to its output data.Fixed-point semantics: A denotational semantics where the meaning of a repetitive structure,like a loop or recursive procedure, is expressed as the smallest mathematical function thatsatis�es a recursively de�ned equation.Loop invariant: In axiomatic semantics, a logical property of a while-loop that holds true nomatter how many iterations the loop executes.Natural semantics: A hybrid of operational and denotational semantics that shows computationsteps performed in a compositional manner. Also known as a \big-step semantics."Operational semantics: The meaning of a program as calculation of a trace of its computationsteps on input data.Strongest postcondition semantics: A variant of axiomatic semantics where a program andan input property are mapped to the strongest proposition that holds true of the program'soutput.Structural operational semantics: A variant of operational semantics where computation stepsare performed only within prespeci�ed contexts. Also known as a \small-step semantics."17
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