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Continued Fractions Without Tears

Ping-pong using Farey sequences is proposed as
an alternative to the traditional fraction chain.

IAN RicHARDS
University of Minnesota
Minneapolis, MN 55455

The traditional presentation of continued fractions is via an infinite sequence of quotients
within quotients. For example:

T+---.

This “python descending a staircase” format has the advantage of historical priority, and it
suggests important generalizations. However, there are approaches that are more conceptual, and
I would like to outline one of them. (For the sake of comparison, we will untangle the infinite
fraction in its traditional form and tie it together with our theory at the end of the paper.) If by
the end of this paper you feel that this is all pretty trivial, then I have succeeded; if you think it’s
tough, then this approach isn’t your cup of tea. Our goal will be to discover and prove the
essential facts about continued fractions and to develop a computer algorithm for them.

The spirit of this presentation is geometrical, but it is geometry in an unusual setting: that of
one-dimensional space. Remember the traditional drill sergeant’s complaint: “Can’t you tell your
left hand from your right hand?” Our approach will be, essentially, to keep careful track of which
points lie right and which ones lie left.

The Farey process

Now let’s take a look at the theory. A pair of nonnegative fractions,
ac
b 4’
is called a Farey pair if bc —ad=1. This means, of course, that the difference between the
fractions is 1/bd. The mediant of these two fractions is defined to be (a+c¢)/(b+d). For
example, 2/3<3/4 is a Farey pair, with mediant 5/7. A trivial calculation shows that the
mediant always lies between a/b and c¢/d, so we have:
a_atec ¢
b b+d, d’
, (mediant)
For convenience, we call the interval [a/b, ¢/d] a Farey interval if a,/b and c/d are a Farey pair.
These ideas have a curious history. Farey discovered some propdrties of the mediant but was
unable to prove them; the proof was supplied by Cauchy, who named the theory after its
supposed discoverer. However, both were unaware that Haros had proved the same theorems
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several years before. A poignant comment on the capriciousness of fame was made by Hardy and
Wright [2]: “Farey has a notice of twenty lines in the [British] ‘Dictionary of National Biography,’
where he is described as a geologist. As a geologist he is forgotten, and his biographer does not
mention the one thing in his life which survives.”

LEMMA 1. Let [a/b,c/d] be a Farey interval and consider the mediant (a+c)/(b+d) (see
FIGURE 1). Then:

(i) the two subintervals formed by inserting the mediant are also Farey intervals;

(ii) among all the fractions x/y lying strictly between a/b and c/d, the mediant is the one (and
only one) with the smallest denominator.

As we shall see, part (ii) of Lemma 1 is the key to the whole theory.

a x atc 4
b y b+d d
® % ® °
N J\ J
' 'S
d, d;

FIGURE 1. The geometric setup in Lemma 1.

Proof. Part (i) is easy. For part (ii), take any x/y#(a+c¢)/(b+d) in the open interval
(a/b,c/d). We first assume that y <(b+ d) and derive a contradiction. The distance d, = (x/y)
— (a/b) (see FIGURE 1) is equal to (bx —ay)/by. The numerator (bx — ay) is a positive integer
and thus = 1; hence

Similarly

x_ 1
y dy’
and so

1 1 _b+d 1
dl+d2>b_y+5__y—”b_d'
But since a/b,c/d is a Farey pair, the distance d,+d,=1/bd, and the assumption that
y<(b+d) leads to a contradiction.

Now we come to the case y=b+d. We can handle this without computation, using the
following device. From part (i), the mediant (a + ¢)/(b + d) partitions the original interval into
two Farey subintervals. We apply what we already know to these subintervals. The mediants for
these subintervals must have denominators larger than (b+d). So by what we have already
proved, there is no x/y inside either of these subintervals with y <(b+d). (Yes, <.)

The procedure used in the last paragraph of the proof above provides an introduction to a
technique which is called the slow continued fraction algorithm. This is a method for finding the
“best” rational approximations to an irrational number a. (For convenience, we will assume that
0<a<1.) However, it turns out to be easier to forget about a for a moment, and study the
technique in the absence of its object. In that case, the technique is called the Farey process. Later
it will become clear how we apply the Farey process to zero in on a.
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Y 1 1 2
] 1 3 5
0 1 1 1 3 2
1 2 1 3 8 5
0 ! 1 2 1 1 4 3 5 2
1 3 2 3 1 3 1 8 13 5
01 1 2132 31 1 5 4 7 3 8 5 1 2
1 4 3 5 2 5 3 4 1 3 14 11 19 8 21 13 18 5
TABLE 1. The Farey process. TABLE 2. A continuation of Table 1,

starting with the Farey pair 1/3 and 2/5.

Here is the Farey process. Start with a Farey pair a/b and c¢/d. Take their mediant; this
creates two subintervals and two new Farey pairs. Form all possible mediants again; this gives
four subintervals.... The process is illustrated in TABLES 1 and 2. (For a curious property of this
algorithm, see the paper of Shrader-Frechette in this Magazine [3].) Now it is clear how we zero in
on an irrational number a. We simply, at each stage, keep the interval that contains « and discard
the rest. This is the slow continued fraction algorithm. (The “fast” or standard algorithm is a
refinement of the slow one, and we will describe it presently.)

If o were a rational number, « =p/q, then the situation could be different, for p/q might
appear as one of the division points in the Farey process. In fact that always happens! This,
essentially, is the theorem that Farey discovered but couldn’t prove. (Actually Farey looked at it
differently, which is one reason why he couldn’t prove it.) Farey’s formulation—which has many
uses, but is the wrong approach here— can be found in any standard textbook on number theory,
e.g., [2], p. 23.

From now on, we will assume that the Farey process begins with the numbers 0/1 and 1/1.

THEOREM 1. Every rational number p/q in lowest terms, with 0 <p/q <1, appears at some stage
of the Farey process.

ExaMpLE. The reader might want to continue the process in TABLE 2 until he finds the fraction
37/100, which lies between 7/19 and 3/8.

Proof of Theorem 1. As expected, we use Lemma 1 above. After that, the proof almost writes
itself. Suppose that a given fraction p/q between 0 and 1 never shows up in the Farey progression.
Then at every stage, p/q remains squeezed between two adjacent fractions in the Farey process.
By part (i) of Lemma 1, these fractions will always be a Farey pair. But the denominators of these
fractions increase without bound (on one side of p/gq, at least). Eventually the sum of the
denominators exceeds ¢, and this violates Lemma 1, part (ii).

We seem to have strayed from our objective, which is the good approximation of irrational
numbers by rationals. Now we come back to it. First we define what we mean by a “good”
approximation.

DEFINITION 1. Let a be an irrational number with 0 <« <1. Then a fraction p/q is called a
best left (respectively, best right) approximation to « if:

(i) p/q < a (respectively, p/q> a);
(ii) there is no fraction x/y between p/q and a with a denominator y <g.

Thus we put the left and right approximations to « into separate categories which do not
compete against each other (like the American League and National League in baseball, before
the World Series). After that, we give preference to fractions with small denominators. The small
denominators, of course, are the whole point. (It doesn’t take all this fuss to prove that the
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rational numbers are dense in the reals!) What we seek are classy approximations, like the famous
estimates 22 /7 and 355 /113 for #. Thus 355/113 gives o correctly to six decimal places, although
the denominator in this fraction is scarcely over a hundred. [The next term in the continued
fraction expansion for 7 cannot be found on a hand calculator, because calculators round off after
about ten digits, and the next term is more accurate than that.] The following theorem shows how
to-discover these good approximations.

THEOREM 2. Take any irrational number o, with 0 < a < 1. The slow continued fraction algorithm
(= the Farey process, zeroed in on a) gives a sequence of best left and right approximations to a.
Every best left /right approximation arises in this way.

Proof. We use Lemma 1 and Theorem 1. Thus consider any Farey pair a/b and ¢/d. Lemma 1
tells us that all fractions lying between a/b and c¢/d have denominators larger than either b or d.
Hence these fractions are not in competition with a/b or ¢/d, and automatically, a/b and c/d
furnish best left /right approximations to all irrational numbers « lying between them. This proves
the first part.

Now from Theorem 1, which tells us that all fractions occur in the Farey process, we will prove
the second part. Take any fraction p/q between 0 and 1 and consider the first time it appears in
the Farey process. Then p/gq must be the mediant of its two neighbors: call them a/b and ¢/d.
Thus we have the three adjacent terms (see also TABLE 2):

<P

a
b q d

with p=a+c,g=b+d. Now there are two possibilities. If a lies between a/b and c/d (and
hence in an interval also bounded by p/q), then p/q is a term in the slow continued fraction
algorithm for a. If not (so that a lies left of a/b or right of c/d), then one of the fractions
a/b, c/dbeats p/q on all counts, by being closer to a and having a smaller denominator; and thus
Pp/q is not a “best” approximation to a.

The fast continued fraction algorithm

We turn now to the fast or standard continued fraction algorithm. This involves a selection of
certain exceptionally good approximations furnished by the slow algorithm. It is important to
note that the fast algorithm finds nothing new; in fact, it finds less, but by doing so goes faster.
Here is a description of it.

Recall that the slow algorithm involves a series of shrinking Farey intervals zeroing in on an
irrational number a. At each stage in this shrinking process, one end of the Farey interval moves
in closer to a, and the other end stays put. Now it may happen that the same end, say the left one,
moves several times in a row before the right-hand end moves again. Suppose that the left
endpoint moves altogether s times. In the slow continued fraction algorithm we would keep all of
the resulting points, since all of them furnish best left approximations to a. In the fast algorithm,
we retain only the last (or sth) point.

To understand this better, it may be helpful to consult FIGURE 2. The left-hand endpoint
a/b=a, /b, moves successively to a, /b, a, /b,, .. .,a, /b, and then stops. How are these a, /b,
computed? Just ask, what is the Farey process? Each a, ., /b, is simply the mediant of a; /b,
and c¢/d, and the algorithm successively computes these mediants until the mediant a, , /b, is
to the right of a. We stop the rightward migration of the left endpoints of the Farey pairs with the
fraction a, /b,, before we cross the point a. This rightward migration is then followed by a similar
leftward migration (of the right-hand endpoint) and so back and forth ad infinitum. It is
conventional to index these migrations by n, the rightward moving ones being even, the others
odd. I have suppressed the variable n to avoid double superscripts, but the reader should
understand it is implicit. It is important to note that c¢/d was the fraction retained from the
leftward migration immediately preceding the situation shown in FIGURE 2.
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FIGURE 2. A stage in the slow continued fraction algorithm, in which the left endpoint a /b moves rightward s times.
The next point a,, | /b, ; is on the wrong side of «. For each k, a; /b, is the mediant of a, /b, and ¢/d. The
fast algorithm retains the fraction a, /b, and (when s > 1) discards all of the a; /b, with 1 <k <s.

ExampLE. Referring to TABLE 2, leta/b=1/3 and ¢/d=2/5, so that c/d was the last term in
a previous migration. Suppose that a lies between 5/13 and 7/18. Then the left endpoint
a/b=1/3 moves over two times, to 3/8 and 5/13, giving s = 2. The next rightward movement
would bring the left endpoint to 7/18, which is on the other side of a.

We have explained what the fast algorithm is. Now we ask: is it a good method? Have our
choices of which points to keep, which discard, been good ones? We will define a precise sense in
which the approximations which we have kept are better than those we threw away.

DEFINITION 2. Let a be any number with 0 <a <1, and let p/q be a fraction. We define the
ultra-distance from p/q to a to be q|(p/q) — a|, i.e., g times the ordinary distance. We call p/q an
ultra-close approximation to « if, among all fractions x/y with denominators y < g, p/q has the
least ultra-distance to a. (Here we make no distinction between left and right approximations.)

Thus each fraction p/q is handicapped by having its distance to a multiplied by g. It is worth
noting that between two fractions a/b and c/d, the ultra-distance is not commutative, because the
denominators b and d are probably different. However, for our proof it is much more important
(crucial, in fact) to look at the good side. The ultra-distance from p/q to a has nothing to do with
the number theoretic structure of «. If & moves closer to p /g, then the ultra-distance from p /g to
a decreases.

This may seem very artificial, and it would be nice to have an intrinsic idea of what the
ultra-distance means. Luckily there is a very natural one. In what we have done so far it is really
the denominators of fractions which are interesting. Suppose we consider together all of the
fractions 0/¢,1/4,2/q,... with a fixed denominator g. A little thought shows that any number a
can be approximated by one of these fractions to within a distance of 1,/24. This approximation is
guaranteed, so to speak. Now the ultra-distance is just the ratio

I(p/q)— e
(1/9)

Thus (ignoring the 1/2) the ultra-distance tells us how much better the fraction p/q does than
what we could automatically expect.

A comparison of Definitions 1 and 2 shows that “ultra-close” implies “best.” (Just as with
modern advertising, “best” isn’t really very good.) Hence, by Theorem 2, the slow continued
fraction algorithm furnishes the only possible candidates for “ultra-close” status. We aim to prove
that the fast algorithm makes the correct choices from this list.

LEMMA 2. Let a/b and c/d be a Farey pair with mediant (a+ c) /(b + d). Then the ultra-distances
from either a/b or c/d to the mediant are the same.

In terms of the ordinary distance on the number line, the mediant is not equidistant from a/b and
¢/d, but in terms of the ultra-distance, it is.

Proof. The ultra-distance from a/b to (a+c)/(b+d) is
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atc a
b (3505
and a simple calculation (using bc — ad = 1) reduces this to 1/(b+d). By symmetry, the same
holds for ¢/d.

THEOREM 3. Take any irrational number o, 0 < a < 1. The fast continued fraction algorithm gives
precisely the set of all ultra-close approximations to a.

Proof. Since “ultra-close” approximations are also “best,” it follows from Theorem 2 that we
need consider only the terms produced by the slow continued fraction algorithm. Recall that the
slow algorithm gave us a sequence of terms a, /b,,...,a, /b, moving inward towards «, and that
we chose a; /b, and discarded the rest (see FIGURE 2). The question is: did we choose correctly;
ie., is a, /b, ultra-close to a? (Here we must not jump to conclusions. It is not a priori clear that
the fractions which are closer to « are better, because the ultra-distance also involves the
denominators, and the denominators in the sequence a, /by,...,a, /b, are increasing.)

We should also remember that the slow algorithm involves a sequence of leftward and
rightward migrations, and FIGURE 2 shows only a single stage in this process. By induction, we
can assume that our theorem holds for all of the previous stages. In particular, we can assume that
¢/d (which was the term retained from the previous migration) is an ultra-close approximation to
a. So now the question reduces to: which of the a, /b, (if any) are better than c/d?

Take any a, /b,. Recall that by definition of the Farey process, a, /b, is the mediant of
a, /b, and c/d. Hence by Lemma 2, a, /b, and c/d have the same ultra-distance to a; ., /b; .
Thus the contest is decided by whether « lies to the left or right of ay ., /b . If left, a, /b, wins.
If right, ¢/d wins. But (cf. FIGURE 2), a lies to the left of a.,/b,;, (1 <k<s) if and only if
k=s.

So the proof is, after all, just a matter of knowing your left hand from your right hand.
How to program it

The Farey process we have described is a concrete algorithm for approximation of an irrational
number, and is suitable for programming on a computer or programmable calculator. Here, for
the sake of brevity, we will give the reasoning as a chain of assertions, which the reader is invited
to prove. We will conclude with an actual program. (We are not here concerned with the minutiae
of programming languages, and common sense dictates that we continue to follow the notations of
this paper.)

We assume that the fractions a/b and c/d in FIGURE 2 have already been found. Of course, we
view this as a set of four integers a, b, ¢, d, not two real numbers. Our objective is to compute the
integers a, and b,. To achieve this, we will first show how to compute a, and b, for any k, and
then see how to find the stopping index s.

1. The integers a, and b, are given by a,=a+kc,b,=b+kd. (Hint: a;, /b, is the
mediant of a, /b, and ¢/d.)

2. The function f(x) = (a+ xc) /(b + xd) is strictly increasing for x > 0. If we define the real
number y by the condition f(y) =a, then y=(ab—a)/(c— ad). (Note: this depends on the
assumption that a/b<c/d; if that inequality were reversed, then we should replace the word
“increasing” by “decreasing.” We mention in passing that (ab— a) is the ultra-distance from a/b
to a, and similarly for (¢ — ad).)

3. The stopping index s is the greatest integer <y. (Hint: use the fact that f(x) is increasing.)
This data gives us the basis for a workable program. To make a “do loop” out of it, we compute v,
then s, then a; and b,. Then we make the replacements a = ¢,b=d, ¢ = a,;,d = b, and start over.

4. There is a way to speed things up. Let y and s be as above, and let y’ be the next value of y.
Then y'=1/(y—5s).
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5. The best starting point for this program is a/b=0/1,c/d=1/0 which we think of as
“infinity.” Then after step 2, y = a. (By starting with ¢c/d=1/0 instead of 1/1, we remove the
restriction that a <1.)

Now let’s write the program. The variables are v, s, a, b, ¢, d, a,, b,, of which only y is not a
positive integer. The number to be approximated is o. The fractions a; /b, are the approximations.

PROGRAM.

Start witha=0,b=1,c=1,d=0,y=a.

Main Loop:

s =int(y)

a;,=a+tsc N
b,=b+sd 2
Print out a,, b, (and perhaps s)

a=c

b=d

c=a

d=b,

y=1/(v—5) 3)

Repeat the main loop.

This is an infinite loop, of course; you can just stop the program by hand or else fix it. The
variable s occurs in the standard presentations of continued fractions, where it is usually written
a,. If you take the number e=2.718... you will find that the s values follow an interesting
pattern; you will also find that this pattern breaks down eventually (why?). The s values for the
square roots of various integers are quite interesting. Try also the golden mean (1 +v5)/2; here
the b, values form a well-known sequence, and the s values are also interesting. Nothing is known
about higher level algebraic irrationals. A famous unsolved problem is to prove that the sequence
of s values is unbounded for any algebraic number of degree greater than two.
If we apply our program to the number 7, we obtain the following data:

2 b s
3 1 3
22 7 7
333 106 15
355 113 1

103,993 33,102 292

There is little point in carrying the calculations much further, since the approximation a, /b, =
103,993 /33,102 is already good to nine decimal places, and machine round-off error would soon
render the results meaningless. (For example, the same program on my hand calculator produced
a 293 in place of the 292 at the bottom of the s column.) Looking at some of the other fractions
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a,/b,, we find the familiar approximations 22 /7 and 355/113 mentioned earlier. Finally we
observe that the numbers in the s column are just those which appeared in the “python” at the
beginning of the article. This is no accident, as we now show.

Relation to the traditional format

Following our notations, the continued fraction expansion of an irrational number o > 0 can be
expressed in closed form by the equation:

a=sy+1
s+l
s2+'
(4)
41

1
Sp—1 7T Y—n .
Here the s, are integers, and v, is an irrational number > 1 chosen so that equality holds. Then s,,
is the greatest integer <v,. If in (4) v, is replaced by s, the fraction chain becomes a rational
number p, /q,. These p, /q, are the terms in the ( fast) continued fraction algorithm for a; they are
left approximations a/b if n is even, and right approximations c/d otherwise. The variable n, which
we suppressed in our discussion of the fast continued fraction algorithm, indexes the rightward
and leftward migrations in our geometric presentation.

To prove these statements, we will use the computer algorithm as our pivot. We have already
seen that the geometric theory leads to this algorithm; now we deduce the same algorithm from
the fraction chain (4), thus proving the equivalence of the two theories.

First, it is easy to prove by induction that, given «, a unique fraction chain (4) exists for every
n. For, assuming this holds for n, we immediately deduce the recursion

Yn+1= 1/(Yn _sn)'
We notice that this matches formula (3) in the computer algorithm. Now our objective is to
recover formulas (1) and (2). This requires another induction.
We think of the fraction chain (4) as a function of v,, with the s, held fixed and y, varying. In

order to prove the assertion in italics, we will show that the function (4) has the form:

Pn—2 + YnPn—1

" Tnfn-1 5

dn—2 + Yndn—1 ( )
(To match the notation of the computer algorithm we would write a/b=p,_,/q,—, and
¢/d=p,_,/q,-.-) Nowto make the induction from » to n+ 1, we recall that p, /g, is the result
of replacing y, by s, in (4), and that v, ., =1/(y, —s,). Thus:

Dn—1 + Yn+1Pn — DPn—1 + Yn+l(pn—2 +Snpn—l)
qn—1+7n+lqn qn—1+7n+l(qn—2+ann—l) ’

and using 1/y,,, =7, — s, yields
(Yo =50)Pu1F (Pu—2 T 8uPu1) Y Y
(=) g1 T (a2 T 54du—1)  dn—2tVuGu—1
This completes the induction and establishes formulas (1) and (2).

Thus our previous theory, in its geometric setting, is equivalent to that determined by the
endless fraction.
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ELecTroNic FAREY PING-PoNG GAME,

Suggestions for further reading

An interesting geometrical approach to continued fractions is given in the book by Harold
Stark [4]. Roughly speaking, Stark’s approach is two dimensional (based on the slopes of lines),
whereas our approach is one dimensional. For the classical “infinite fraction chain” viewpoint, see
almost any book on elementary number theory. My favorite is Hardy and Wright {2]. An
elementary introduction to fractions (Egyptian fractions, Farey fractions, continued fractions,
decimal fractions) can be found in [1].
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