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What Does a Computer Program Mean?
An Introduction to Denotational Semantics

Dr. Gene B. Chase, Messiah College, Grantham, PA 17027

I. Who should read this paper?
This paper is for mathematicians who are curious about how topology is being used to prove

computer programs correct. Those advanced parts have been limited to Sections III, V, and VI, and
they are marked by a @. By contrast, sections II, IV, and VII are suitable as a companion to existing
textbooks in a Computer Science course such as Organization of Programming Languages, the course
CS 8 as described in Curriculum [1979]. Perhaps in a first reading you might read just those sections.

Among many books and articles on the semantics, or meaning, of computer languages,
several now claim to be easy introductions to the topic. For example, the review by Kitchen [1989] of
a book by Hennessy [1988] says that the book is “a very readable introduction ... my wholehearted
nominee for this field's principal introductory text.” Instead, I find it terribly dense and unmotivated.
It does not answer the most basic questions:  Why does anyone care what a computer program
means?  What are the options for semantics (a formal meaning) from other disciplines that inform our
choice?

And what about professional mathematicians now pressed into service teaching Computer
Science courses?  Sections II, IV, and VII are meant to be an easy introduction to the semantics of
computer programs, with the harder details clearly marked. I mostly wanted to say the things that I
didn't find in books, so this paper is meant to supplement printed textbooks, not to replace them.

II. The practical perspective:  Why should I care what a program means?
As Lewis Carroll has Humpty Dumpty say, “When I use a word, it means whatever I want it

to mean, nothing more and nothing less.  It's just a matter of who's master.”

Lewis Carroll might say that a computer program can mean anything that we want it to mean,
nothing more and nothing less. I am going to justify in as simple a way as I possibly can this
definition:  The meaning of a computer program is a mathematical function. How might we might
arrive at that conclusion, and what does it mean in practical terms to a computer scientist earning her
living writing programs?

In order to decide what a computer program should mean, what we call its `semantics,' we
should examine the properties that a semantic representation should have. There are both practical
and historical 
motivations for these properties. We shall examine each of those motivations in turn.

Having a precise meaning for a computer program is important. Peer-reviewed authors even
get the meaning of computer programs wrong. That would be less likely to happen if more attention
were paid to semantics from the outset. More importantly, if a program does not match its intended
meaning (as provided for example by a set of specifications stated declaratively in English), then it
might fail in a mission-critical application.

Much attention is paid to semantics in the Computer Science curriculum, but under the guise
of programming style. One practical goal of this paper will be to help you to program with good style
by showing why bad style is not merely a matter of bad taste but a matter of resolving ambiguities
which prevent a program from being clear and correct.
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I believe that MIT educator Seymour Papert is right that the fundamental notions of
algorithms and of recursion are available to the concrete operational child (about age 6) as primitive
notions. Why then should we try to explain them in terms of something else, like mathematics, which
has no claim at being any more fundamental?  The answer is simply that mathematics provides a
precision of thought that analogical thinking cannot.

Various authors (Chase [1979], Mayer [1979], Shneiderman [1979]) have tellingly argued
that students of Computer Science need conceptual models with which to explain the workings of a
computer program. For example, variables are “boxes” into which values are put in this sort of
analogy. But variables on the left of an assignment statement are meant to name the boxes; variables
on the right hand side of an assignment statement are meant to name the values in the boxes. To make
all of this more precise, a mathematical approach is necessary. That should not be surprising, since
one good definition of mathematics is the science of precise analogy.

A. Operational semantics was motivated historically by the desire to write error-free
programs.

If operational semantics were to be applied to English, the meaning of the word `dog' would
be `perro.'  That is, operational semantics gives the meaning of the constructions of one computer
language in a supposedly simpler computer language, just as a Spanish speaker would understand the
meaning of `dog' if it were translated for her.

Schneider [1989] in his (otherwise) excellent introduction to QuickBasic says that a student
should be careful to use if (...) and (...) then ... instead of if (...) then if (...)
then ... because the first is clearer than the second. Clearer it may be, but it can be wrong in a
situation like the following:

if (B <> 0) and (A/B > Error) then writeln ('Fraction too large');

I have used Pascal syntax because and in Pascal according to the document that is usually taken to
specify Pascal, Jensen [1978], does not say what the order of evaluation of the conjuncts should be.
Presumably, different compilers could do the following:

1. Evaluate all conjuncts in an order than cannot be predicted from run to run.
This might happen, for example, on a parallelizing compiler, where the separate
conjuncts are sent to separate processors to be evaluated.

2. Evaluate all conjuncts from left to right.
This is what most introductory Computer Science students think is reasonable.

3. Evaluate all conjuncts from right to left.
This is the easiest course of action for a compiler using a stack on which to store
expressions.

4. Evaluate conjuncts from left to right, stopping as soon as the truth value of the whole
conjunct can be predicted according to the rules of two-valued truth tables.

This is sometimes called “McCarthy AND” because it is what the programming
language Lisp is specified to do. Lisp was invented by John McCarthy, one of the
first computer scientists to give serious thought to the semantics of programming
languages.

The issue is a semantic one, not a syntactic one.

There are so many features of a language. How can we hope to think of all issues such as this
one?  The answer is to create a formal way in which we can specify a program, and to prove (which
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suggests some mathematics) that the program meets the specifications. This is being done now for
programs even as large as the size of a compiler. See Lee & Pleban [1986]. To put it briefly so as to
highlight how to prove that a compiler works:

(*) We first compile a program into mathematics, where proving is
well-understood, before compiling it into hardware.

The job is uninviting and even nearly unmanageable for a human alone, but the computer can assist
in the housekeeping details. (Please don't ask how we know that the program that helps us is in turn
correct!)

This style of semantics, in which we transform a program into another one about whose
behavior we can reason, is sometimes called operational semantics because we are still thinking of a
program as meaning how it behaves. The first appearance of an operational semantics of a practical
language was Vienna Definition Language (VDL) in 1968 [Lucas, 1969], by which IBM Vienna
attempted to put the PL/1 language on a sound semantic foundation. VDL is a “mathematical” or
idealized computer on which the ideas for PL/1 were tested conceptually. It looked very much like
the register-level description of any modern computer. VDL had been successful in describing Algol
60 after the fact. It was put to use in the design of PL/1.

B. Axiomatic semantics was motivated historically by the desire to prove programs correct.
If axiomatic semantics were to be applied to English, the meaning of the word `dog' would be

`household pet, Canis familiaris.'  That is, axiomatic semantics gives the meaning of the
constructions of one computer language in a mixture of the same computer language and some other
more formal language, just as a biologist would understand the meaning of `dog' more precisely if it
were translated into both other words and the more precise Latin genus and species.

More generally, we not only want a compiled program to “do the same thing as” the original
program, but we want the program to match its specifications. I use quotation marks to remind you
that only the compiled version is executed (unless you have a language which can both be compiled
or interpreted at request). So, often the machine only executes the translated program. To execute the
original program we would have to work by hand. (I'm overlooking the fabrication of a chip which
executes Pascal in the hardware, which Pascal's inventor, Niklaus Wirth, has done.)

Since specifications are stated declaratively, there must be some way to relate procedural
code to declarative statements of that code's outcomes, like “the array will be sorted.”

One possible solution to this dilemma is to restrict people to write in a language which has
both declarative and procedural readings of the same statements. Or along the same thread of ideas,

We first write a program's specifications, which we then transform into
the program.

That turns out to be very hard to do. So far it has only been done for programs of the size of a single
function, such as calculating the quotient q and remainder r upon division of a by b given the
specification that a = qb + r and 0<=r<b. For larger program, the best that has been done is partially
automated, partially manual.  For example, there are compiler-compilers, whose job it is to craft a
compiler out of specifications for syntax, but the code generation part is still manually input, an art
more than a science.

This style of semantics, which is concerned with a program matching its specifications, is
often called axiomatic semantics, or Floyd-Hoare semantics in honor of Robert Floyd and Tony
Hoare, the two main instigators of the ideas. The specifications are declarative statements and the
goal is to prove (usually by mathematical induction) that the computer program transforms correct
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declarative statements into correct declarative statements, based on a set of axioms related to the
constructions of the language. I'll display an example below.

Having a semantics which is already very close to mathematics would make easy the job of
reading procedures declaratively. That's the main reason that functional languages are receiving
widespread attention today, where every step in the program is a function. With the exception of
input and output functions, we make those functions to be free of side-effects (that is, of potential
changes of global variables). Such a functional program can be proven mathematically to do what it
claims to be doing. For that matter, changing global variables threatens the programmer's ability to
understand what the code is supposed to do. Pure functional languages like John Backus's FP [1978]
or a subset of some dialects of Lisp like Scheme or TLC Lisp are not yet widely used, but they are a
step in the right direction.

Another way to make this job easy would be to use a logic language. A pure logic language
also has a semantics, based on relations, which is very close to mathematics. This was one motivation
for the Japanese Fifth Generation computing project to choose Prolog as the foundational language.

But can we do without global assignment statements, the so-called “go to” of data structures,
as required by a functional language?  We can. We can even do without assignment statements at all,
but that's a little radical for an introduction. To do so we must think in new ways about global
assignment, just as we now avoid go to by using block-structured constructs. We might even need
new hardware which is optimized for the new constructions, just as current hardware is optimized for
sequential Pascal-like languages.

The “good” subset of current functional or logic programming languages has not proved to be
useful in practice to date. In Prolog for example, recursion relies on the correct ordering of statements
(some compilers to be cooperative in this respect reorder statements for you—ugh!), side effects are
produced by several of its primitives, and the cut operator prevents a statement from having a purely
declarative reading.

Using the mathematics which I shall describe below, not just compilers but also sorting
algorithms, a unification algorithm, theorem-provers, and even hardware have been proved correct;
that is, to validly match their specifications. Hardware proved correct has included an associative
memory unit, a CMOS invertor, a sequential multiplier, and one entire microprocessor—the Viper—
according to Larry Paulson [1987]. The Defense Department [1983] reserves its highest level of trust
in a computer program for those for which a proof that it does as claimed has been provided.

C. Denotational semantics is motivated by the desire to automate program transformation.
If denotational semantics were to be applied to English, the meaning of the word `dog' would

be 
.  That is, denotational semantics gives the meaning of a computer language
construction in terms of a mathematical thing to which that construction refers.

Suppose you had the job of converting thousands of lines of Fortran 77 code
to PL/1 code. How would you do it?  By hand, no doubt. Why not just write a
program to convert Fortran programs to PL/1 programs?  Can that be done? 
Certainly 90% of it ought to be able to be done automatically. Why not 100%?  The

answer is obvious if we go from PL/1 to Fortran:  Fortran 77 doesn't support records, or recursion, or
a host of other PL/1 constructions, so we are left stranded when those constructions are found in a
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     Of course, both PL/1 and Fortran 77 are equivalent in a strong way, both being equivalent to a Turing machine.1

However, this equivalence is not easily recognized by a human.  As we shall see in the historical section below, the
meaning of a computer program ought to be understandable.

PL/1 program.1

Even in the other direction, there are problems. Is the value of a loop control variable being
used outside of the loop?  If so, what value will it have:  the test value of the loop, or one increment
more?  Is the automatic conversion of an integer to a real in an assignment statement intentional or
accidental?  We could tell the Fortran programmer not to use any “tricks,” but that's just another way
of saying use a semantically well-behaved subset of Fortran. Remember that Fortran even allows you
to change the value of constants by passing them as (reference) parameters!

One personal anecdote here will help you to see what I mean about tricks. When I first
programmed for money at Grumman Engineering Corporation, converting programs from Fortran II
to Fortran IV, I ran into an assignment statement that looked like this:

I = I

I asked a more experienced colleague why the statement was in the program. He answered that the
compiler always kept the index of a DO loop in a register (which is why I still call registers “index
registers”), so the index could not be used outside the loop. Fortran II had a good idea semantically.
But the author of the program wanted to use this index upon exit from the loop. His line of code
copied the index in a register on the right hand side into an addressable location in memory on the
left hand side!  You can see that the semantics of the Fortran II program depended on undocumented
knowledge about the compiler's behavior.

If we had a formal way to capture the meaning of a program, then we could say that the
translation of a program from Fortran to PL/1 must preserve meaning. One possible strategy that is
being tried by various people, at MIT in their automated programming project (see Rich & Wills
[1990]) for example, is to create a library of idioms in some kind of “canonical form” and to go from
Fortran to the canonical form and then from the canonical form to PL/1 code. That means in
particular that the mapping from code to canonical form must be reversible. That form is usually
something resembling functional programming:  data-flow, or John Backus's FP [1978] for example.
The language ML is becoming increasingly popular for this task because it is strongly typed like
Pascal.

Such research is in its early stages, but as with any “expert systems” approach, which
depends on querying perhaps many human experts to provide such a library, we can never guarantee
100% conversion, since we may always encounter a piece of code that's not in our library of idioms.
For a simple example, if the library recognizes a SORT when it sees a Bubble Sort, it will not thereby
recognize a Quicksort. But there are an unlimited number of sorting methods, so that plan cannot
succeed 100%.

But the late Christopher Strachey came up with an idea to represent the meaning of computer
programs as mathematical objects. (And to represent data too, but that's the easy part.)  Strachey's
approach is called denotational semantics because the mathematical objects denote the program or
the data. The problem was that his system was contradictory, for it required that a set of elements be
equivalent to a set of functions from those elements to themselves. It's easy to see by a counting
argument that that's impossible:  there are always more functions from D to D than there are elements
in D. To put it more precisely, Strachey's models used something called lambda calculus, but there
were no consistent models of lambda calculus at the time that Strachey began his work. Until Dana
Scott, now of Carnegie Mellon University, came up with (several in fact) models of the lambda
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calculus, Strachey had nothing other than a potentially contradictory set of axioms and a great
intuition. Scott put Strachey's work on a firm foundation. Denotational semantics represents both data
and programs as mathematical objects in a uniform way.

Program transformation then proceeds by transforming a program to its denotation, then
translating the denotation into a program in the new language. Much harder to do than to say!  But
that is what I would like to give you the flavor of in what follows.

@ III. A mathematical model:  an information system
This section should be skipped on a first reading. It assumes a familiarity with general

topology, and it is presented in telegraphic summary style, not an expository style. Any notes that
depend on this section will be marked with @ below.

A. Definitions

1. Lattice.  A lattice is a set for which every pair of elements has a least upper bound (supremum,
lub, or £) and a greatest lower bound (infimum, glb, ¢).

Example 1.  An example from Numerical Analysis. Consider closed intervals of rational
numbers, and the empty inverval i which we write y. We define

1 2 1 2I  £ I  / I  1 I

1 2 1 2giving a `semi-lattice.'  If we were to define I  ¢ I  /  I  c I , we would have a lattice. (This is
the so-called dual of the familiar lattice of subsets. The dual of a lattice is the result of
exchanging lub and glb everywhere.)  Instead for this example we define

1 2 3 1 1 2 2 1 2 1 2I  ¢ I  / I  where [a ,b ] ¢ [a ,b ] / [min(a ,a ), max(b ,b )].

This turns out to be a special kind of lattice that Scott called an information system (see
definition 5 below). It's a lattice used in Numerical Analysis, where the intervals are ranges of
uncertainty in measurement.

A lattice is a special case of a partially ordered set, for we can define a partial order ¥ by the equation

2 1x ¥ y  /  x = x £ y. We say that I  is more informative than I .

Example 1, continued.  In our example of rational intervals we can show that

1 2 1 2I  ¥ I  / I  g I . Knowing that a point is in a smaller interval is more informative than
knowing that it is in a larger interval.

2. Complete lattice.  A lattice is complete if there is a least element, z, which we read `bottom,' and
the least upper bound of every set of lattice elements is again an element of the lattice. Any lattice
can be completed by the simple device of adding another element, y, which we read `top,' which is
the lub of any set of otherwise incomparable elements.

Example 1, continued. The single interval Q of all rational numbers will do for z. It is the
least informative of all intervals. The least upper bound in this example is intersection of
intervals. Since the intersection of any arbitrary set of intervals of rationals is an interval of
real numbers, we can complete the lattice of Example 1 in a familiar way by allowing our
intervals to be intervals of real numbers.

Alternatively, we could adjoin in Example 1 a single arbitrary element y  and define the least upper
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bound of any set of rational intervals whose intersection is not a rational interval to be the element y.

This kind of choice is analogous to the two possibilities in topology of compactifying the real
numbers:  by adjoining -4 and 4 to the reals, or by using a one-point compactification.

We can press the analogy of this example further. Since every partially ordered set has a topology
induced by the order, every lattice also has a topology. However, the topology induced by ¥ is too
fine a topology for our purposes. That is, it has too many open sets. Here is the topology that we shall
use.

x x3. The Scott topology.  Under ¥ define basic open sets to be O  / {y: x ¥ y}. We say that O  is all of
the elements of the partially ordered set that are “more informative than x.”  Now as usual take finite
intersections and arbitrary unions of basic open sets to generate all open sets. We shall call this the
“Scott topology” on a lattice.

Example 2. Consider the power set of the natural numbers, P(N) as a lattice under set

{n}inclusion, f. If we start with O  / {X: n f X}. where n 0 N, the natural numbers, as a basis,
then the topological space P(N) of subsets of N that we get in this way will not be the usual
Cantor product topology on 2  (={0,1} , which is isomorphic as a set to P(N) via aN N

0characteristic function). In fact this Scott topology will be a T  separable space but not

1necessarily even T  separable.

This Scott topology on P(N) is determined by finite positive information.  But the usual
product topology is determined by positive and negative information; for example, {X 0
P(N): 70X, 13óX} is open in the Cantor topology, but not in the Scott topology. See
Barendregt [1985, p. 470] or Rogers [1967, p. 217].

4. Countably generated.  A countably generated lattice is one in which there are at most only
countably many basic open sets.

In Example 1, there are uncountably many real intervals in the completed lattice, but it is
generated by only countably many intervals of rationals, so it is a countably generated lattice.

In fact the lattices that are needed in what follows are not only countably generated, but every
element has only a finite chain of elements below it in the partial order. That is not true of the real
intervals in Example 1.

In Example 2, there are uncountably many sets in P(N), but P(N) is a countably generated
lattice since there are only countably many elements in the basis.

5. Information system.  An information system is a countably generated complete lattice with a top,
y, and a bottom, z, topologized by the Scott topology. We shall call y “overdetermined” and call z
“underdetermined” or “completely uninformative.”

Both Example 1 and Example 2 are information systems. In practice, we shall be interested
not only in lattices of sets of numbers, but in lattices of functions with domain and range in
such lattices.

6. Continuity in a lattice.

1 2Define a monotone function f: D  ——> D  to be one which preserves the partial order:

x ¥ y implies f(x) ¥ f(y)   �x,y.

The monotone continuous functions on a lattice are well-behaved with respect to directed sets, where
continuity is defined in the Scott topology. We have the following
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1 2Theorem:  f: D  ——> D  is monotone and continuous if and only if
  4 4

i if(£ x )    = £f(x ).

i=1 i=1  

See Rogers [1967, p. 217].

7. Cartesian products

1 2 1 2 1 2 1 2 1 2D  x D  is defined by (x ,x ) ¥ (y ,y ) if and only if x ¥x  & y ¥y

8. Sum (disjoint union)

1 2 1 2 1 2D  + D  is defined by (x ,z ) c (z ,x ), factored out by an equivalence relation to assure that

12 1 2 12 1 2the bottom of ordered pairs z  = z  = z  and the top of ordered pairs y  = y  = y .

9. More examples of data structures as lattices. I've named the first two, B for Boolean and Z for
Integer, so as to use them in what follows.

   
Example 3 Example 4

B, BOOLEAN Z, INTEGER

Example 5
  (not countably generated, hence not an information system)

REAL

In fact, every data structure in every computer language has been modeled by an information
system. (The data type REAL in a computer program is really made up of intervals of rationals, and
so is more like Example 1 than Example 5.)  If they are not recursive data structures, then the lattice
is “flat”; that is, only top and bottom are comparable with other elements. Examples 3, 4, and 5 are
flat lattices.

The point of what follows is to represent computer programs as well as data as elements of a
lattice, so that we can leverage the power of mathematics in proving things about them. Here is how
we do that.

10.  Functions as lattices.  The monotone continuous functions themselves form a lattice in our

1 2original example, call it D ——>D . The operations are defined pointwise.

1 2g, f: D  ——> D  is defined as f £ g (x) = f(x) £ g(x) and
f ¢ g (x) = f(x) ¢ g(x)

2Then “g is more informative than f,” f ¥ g is defined as f(x) ¥ g(x) �x0D .

1 2 1 2Theorem: D ——>D  is an information system if D  and D  are.

1 2We must show that D ——>D  is a countably generated complete lattice. The hard part is to
show that it's countably generated.

Here's the idea of the proof, based on Example 1:  The action of a monotone continuous f on
the real numbers in the lattice is determined by its action on the rational intervals; that is, if you know
where the rationals go, then you know where the reals go. But it only takes a countable amount of
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      Using the least number operator, :, we write f(x) = :y g(x,y).2

information to know where the rationals go.

11. Partial recursive functions.
Primitive recursive functions are a class of functions from the natural numbers (non-negative

integers) N into N itself. They are defined as the smallest class of functions including constant
functions, the identity function, and the successor function, and closed under function composition
and under recursion; that is, f is in the class if g and h are where f(0) = g(x) and f(y+1) = h(y, f(y), x).
To get the class of recursive functions, we also include the function f(y) = the smallest y such that
g(x, y) whenever h is in the class.2

The partial recursive functions are recursive functions defined on only some of N. By letting
z represent an element which is the value of a partial recursive function when it is given a natural
number outside its domain, we can think of partial recursive functions as being (total) functions from
N ——> N+{z}. We say that z represents “undefined.”

Kleene created the idea of partial recursive functions to present an account of functions that
could be computed in a purely mechanical way. That explains our special interest in such functions. I
have chosen Kleene's characterization as over against those of others (Church, Markov, Post, or
Turing) because it is clearly equational. So it is purely declarative, not procedural. And equations
have an important substitution property, called `referential transparency' by linguists:  if equals are
substituted for equals, the results are equal. See Rogers [1967, p. 18].

Example 6.  The fibonacci function is a partial recursive function:

f(0) = 1, f(1) = 1,
f(x+2) = f(x+1) + f(x), for x > 1.

It can be shown to be a partial recursive function by showing separately that the following
functions are primitive recursive if j, m, and n are:

     MinusOne(x) = x-1
     MinusTwo(x) = x-2
     IfThenElse (j(x), m(x), n(x)), meaning 

m(x) if j(x)=0, otherwise n(x).

Then f can be defined in terms of these for x $ 0, and undefined for x < 0.

B. Theorems

1. Partial recursive functions. The partial recursive functions are an information system.

This can be proved directly.  There are countably many, so they are certainly countably
generated. They form a lattice under pointwise operations. The totally undefined function f(x) = z for
all x is the bottom function. As usual we assume that a top has been added to complete the lattice.

Partial recursive functions are important because they are a useful model of functions in. say,
Pascal, but they are also mathematical objects about which theorems can be proved.

Example 2, continued.  If all we care about is partial recursive functions, we do not need the
full generality of Scott's definition of an information system in terms of a countable basis. We
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      I have argued that a Christian philosophy of mathematics should have as its first premise that no system is capable3

of being its own semantics.  See Chase [1981] page 84 or Chase [1987] page 238.

can easily restrict our attention to a so-called recursive basis. The reason is contained in the
following theorem. Define a recursively enumerable set of natural numbers as a set that is the
range of a (total) recursive function. Define a recursive set of natural numbers as one that is
recursively enumerable, and its complement is also recursively enumerable. Then, using the

{n}countable basis defined in Example 2, O , if we restrict n to some recursive set, then the
monotone continuous functions are all recursive functions.

2. Category theory
An information system is a Cartesian category with sums, and in fact projective (inverse)

0 1 0 0limits exist in the category sense. Consider for example D  = integers. Then D  = D ——>D  is

i+1 i ifunctions from integers to integers. The sequence of D  = D ——>D  can each be viewed as
containing the previous via a projection.  For example, identify the integer k with the constant

i4 4 4 4function f(x) = k.  The limit D  of the D  then has the property that D  = D ——>D . The beautiful

i4fact is that D  is also a lattice. In fact it is also the direct limit of the D , which makes everything
4 4 4about as nice as you could want. In fact D  = D ——>D  both topologically and algebraically.

In particular, the partial recursive functions form a Cartesian category.

4Scott shows that D  is a model of the lambda calculus—exactly what Strachey needed!

3. Knaster-Tarski theorem.
Any monotone continuous function from a complete lattice D to itself has a fixed point.

Moreover, there is a continuous functional Fix in the lattice (D——>D) ——> (D——>D) such that
for all f in D——>D, Fix(f) is the least fixed point of f.

This is an amazing and powerful uniformity!  We shall use only a small part of its power, to
guarantee that a function exists even though it is defined only on larger and larger parts of its domain.

IV. The historical perspective:  What is semantics?

A. Syntax and semantics may seem arbitrarily chosen at first.
Syntax is the rules for manipulating formal symbols regardless of what they mean. Semantics

is an attempt to give them meaning, whether informally in English or formally. When I first heard
about formal semantics, I thought that it was an exercise in futility:  what point could there be in
inventing another formal system to explain a formal system that is at hand?  That would mean that the
semantics of one formal system would in turn require its own semantics!  That could only be helpful
if the semantics was somehow clearer or easier to work with.  The semantics of a computer program3

is harder to understand than the program itself. Are there not other criteria for picking a semantics?

Here is a contrast between syntax and semantics to clarify their connection. Syntax is formal
and algebraic; semantics is intuitive and geometric. Syntax is finitary, although not necessarily
computable; semantics is infinitary, manipulating whole infinite sets at a time. Proof theory is the
branch of mathematics that manipulates syntax; model theory is the branch of mathematics that
manipulates semantics. It is possible for a formal syntax to have no models. That was the problem
with Strachey's use of lambda calculus as a semantics of programming languages.

A map from syntax to semantics is called an `interpretation.'  We say that a sentence in a
given syntax is `satisfied' in a model if the relationship that it claims to hold is true of the model. For
example, Z, the integers, are a model for the axioms of a group. Thus we are assured that the group



11

      I do not deal with algebraic semantics and action semantics. For an overview of them, see the recent graduate text4

by Slonneger and Kurtz [1995]. The first can be viewed as a variation on denotational semantics; the second can be
viewed as a merger of the best features of denotational and operational semantics. Thus neither provides any additional
insights relevant to the point of this paper.

axioms are not contradictory. But the rotations of a square also form a model for group axioms. What
criteria do we use for choosing models for syntax?  Let me suggest three that have historically been
used.

B. Historically there have been three criteria for semantics.
The major contribution of this paper is found right here. No references, even the most

elementary for junior Computer Science majors (say, Sebesta [1993]), give even the slightest hint of
any criterion for the semantics of a computer program. Even my historically motivated presentation
(in Section II above) of the three major  kinds of semantics does not provide any overarching criteria4

for valuing one as over against another. For that, we need to look at the range of semantics that have
been proposed in other areas than Computer Science.

To start with a specific example, consider quadratic equations in two unknowns as in high
school algebra. We may think of coordinate geometry then as an appropriate semantics. Here is a
sample:

Example 7. Algebra and Coordinate Geometry, 17th century

Syntax Semantics
x  + y  = 1. Equivalently,2 2

x  + y  - 1 = 02 2

The meaning of either equation is a circle of radius 1 centered at the origin.
Allowable syntactic rules:  the “laws of algebra.”

Syntactic rules allow us to transform one equality into another equality. For example, we may add the
same quantity to both sides of the equation. We would like to say that the resulting two equations
`mean the same thing.'  To make that precise, we could say that two equations mean the same thing if
their graphs are the same. This small example already suggests two criteria for an appropriate
semantics:  semantics should be canonical, and semantics should be geometric.

1. Semantics should be Canonical.
By `canonical semantics' I mean that if there are several meanings of an algebraic equation,

we should be able to pick one (the `canonical' meaning) and any other possible meanings should be
able to be shown to be equivalent to it. One easy but unintuitive way to do that would to be to let the
meaning of a quadratic equation in two unknowns be simply the list of numbers A, B, C, D, E, F in
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      Kuyk's [1977] view of the discrete and continuous as fundamental complementarities informs my view5

philosophically at this point.

some canonical representation of the quadratic, say,

Ax  + By  + Cxy + Dx + Ef + G = 0.2 2

In that way, if we wanted to tell whether two equations had the same meaning, we could apply the
laws of algebra to transform them both into this canonical form, and then see whether they had the
same set of coefficients.

2. Semantics should be Geometric.
An equation in two unknowns represents a restriction on the values that the unknowns can

take. We want an equation's meaning not to change if the solution set does not change. Why then
don't we just take its solution set to be the meaning of an equation?  In that way we have a pictorial or
geometric representation of the meaning of the equation.

We are reversing the steps of Fermat and Descartes in the 17th century who sought to reduce
to calculation the intuitions of (synthetic) geometry by creating an analytic geometry. We instead are
interested in restoring intuition to calculations. But does this criterion of being geometric apply to
other examples of semantics?  What about set theory as a semantics for logic?  What might a
semantics for English look like?

Example 8.  Set theory as a semantics for logic.

Syntax      Semantics
Propositional Calculus Boolean Algebra/ Sets 18th century Euler, Venn, Boole
Predicate Calculus Cylindrical Algebra 20th century Tarski, Herbrand, Halmos

Allowable syntactic rules:  “laws of logic,” deduction. For example, modus ponens, universal
instantiation, existential generalization, and-elimination, or-introduction.

What happened to the geometry in this example?  The semantics still has a geometry, suitably
generalized to topology.5

@ Boolean algebra has a natural lattice topology in the sense described in Section III. Paul
Halmos created cylindrical algebra just to prove that predicate calculus can be given a
topology, too. I'm rather a crusader for wishing that his work were more widely known. In
cylindrical algebra, � is a projection operator in the usual geometric sense of projection. I
believe that it adds an excellent level of intuition to predicate calculus.

3. Semantics should be Compositional
We would like to be able to determine the meaning of a complicated expression by putting

together in a systematic, uniform way the meanings of its pieces and the meaning of the rules for
combining the pieces. We say that we want our semantics to be `compositional.'  One benefit of a
compositional semantics is that if equals are substituted for equals, then the results are still equal. We
call this property “referentially transparency.”

@ Recall that in Section III.A.11 we argued that referential transparency motivated our
preference for an equational rather than a procedural mathematical model of computable
functions.

If English were the syntax, we would want the semantics of a sentence to be made up solely
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      Actually, Montague used lambda calculus instead of predicate calculus.  Their difference is not important for this6

paper, as van Emden & Kowalski [1976] show, but lambda calculus is to be preferred if you plan to follow up on this
paper with readings from the references, because it treats functions as data. I aim by avoiding lambda calculus to make
this paper more accessible to the working mathematician.

     An example will help here.  We know that the heavenly body called “the morning star” and the heavenly body called7

“the evening star” are both the planet Venus.  If you were to try to teach that to someone else you could say, “The
morning star is the evening star.” But to substitute “the evening star” for “the morning star” would make this sentence
say something quite different indeed:  “The morning star is the morning star.”  We have turned an experimental fact into
a tautology.  This shows (and the example is an old one from W.V.O. Quine) that a purely extensional semantics of
English (where noun phrases are equal because they refer to the same object in the real world) is not adequate.  Various
intensional (that is, non-extensional; not to be confused with intentional) versions of English semantics have been
proposed.  If we express them in predicate calculus, they require that we quantify over functions as well as over variables.
That is why Montague [1950] used lambda calculus instead of predicate calculus in his intensional formulation.

of the semantics of the noun phrases, verb phrases, and other pieces making up the sentence.
Montague [1950] made some major steps in doing that for English. Here is an example:

Example 9. English and Predicate Calculus

Syntax Semantics
John gives someone the ball. Equivalently,

The ball is given by John. (�x) give (john, x, ball)

Everybody loves somebody. (�y)(�x) loves (x, y)

There is somebody whom everybody loves. Equivalently,
Somebody is loved by everybody. (�x)(�y) loves (x, y)

Allowable syntactic rules:  paraphrasing.

You can see that the semantics of this example is the syntax of the previous example.6

What happened to the geometry?  This time it is workers in Artificial Intelligence who have
geometrized the predicate calculus, using several tricks to create something called a semantic
network. Quantifiers (�, �) are eliminated using a trick of Thoralf Skolem's. That two nouns mean the
same thing is shown by pointers to unique names instead of duplicating the reference to the name. So
for example “John loves himself,” which in predicate calculus is loves(john, john), becomes in a
semantic network

john W loves

To achieve referential transparency for English with predicate calculus as its semantics requires that
we quantify over functions as well as over variables, however. So-called first-order predicate calculus
is not sufficient.7

V. How do the three kinds of semantics for computer programs fare under these desiderata?

A. Operational semantics is too low-level.
Operational semantics does not abstract far enough away from a target machine to be useful.

But more importantly, none of the three criteria for semantics are met by an operational approach. An
operational semantics is not geometric (intuitive), is not canonical (because no unique low-level
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program can lay claim to be the meaning of a high-level program), and is not compositional (because
local changes can have global effects, about which more below).

The main benefits of operational semantics that other candidates for the semantics of a
computer program did not have historically are now true also of denotational semantics:  they can be
generated automatically by a computer from the syntax, and they can be relatively easy to understand.

B. Axiomatic semantics is too high-level
The main problem with axiomatic semantics is that it is both predicate calculus assertions

(specifications) and pieces of code. So it never fully abstracts itself from the code. Although it too
can be generated automatically (Loeckx & Sieber [1987]), the resulting solution is inscrutable. Like
the proof of the Four Color Theorem, we have computation but no insight. But the point of semantics
is insight!  A final criticism:  axiomatic semantics does not handle non-termination (infinite loops)
very well.

Axiomatic semantics can be hand-implemented with very intuitive predicates. But it is very
hard to use for large programs. The only example of its systematic use that has found its way into the
typical undergraduate curriculum is the method of “loop invariants” urged on Computer Science
educators by David Gries and others. (See textbooks by Gries [1981], or Dale and Lilly [1988] for
example). Even in that case, most curricula deal only with a simpler form of that:  requiring that the
student be able to answer the question, `What are all the ways in which this loop can exit?'  Here is a
sample from Dale and Lilly [1988].

Example 10.  A comment specifying a “loop invariant”:  that is, the axiomatic semantics of
the loop.

Sum := 0;
Index := 1;
NonZeroCount := 0;
{Loop invariant:  Index may range from 1 .. NumValues AND

NonZeroCount may range from 0 .. 9 AND
NonZeroCount is the number of non-zero elements in

List[1] .. List[Index-1]}
WHILE (Index <= NumValues)

AND (NonZeroCount < 10) DO BEGIN
IF List [Index] <> 0 THEN BEGIN

Sum := Sum + List[Index];
NonZeroCount := NonZeroCount + 1
END;

Index := Index + 1
END;

In this example, the specification statements are in English. A proof of invariance of these statements
as the loop is executed would proceed informally (that is, by hand rather than by machine
verification) using mathematical induction on the length of the list.

Most first-year undergraduate Computer Science majors should be able at least to give all of
the reasons that the loop might terminate, and therefore all of the possible states of variables just after
the loop is finished. Not all Computer Science curricula require proofs by mathematical induction of
loop invariants.

C. Denotational semantics meets all of the criteria mentioned for a good semantics.
Denotational semantics has been proved to be equivalent to both of the other two kinds of

semantics; that is, functions have been defined in many useful cases to convert denotations back and
forth to the abstract machine code of operational semantics and to the logical specifications of
axiomatic semantics. If we want code to tag along, we may have it, and so be closer to axiomatic
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      It does not handle non-determinism (code which potentially could be executed in parallel) very well yet.8

     Following Herbrand's model of the predicate calculus.9

semantics; if we want to include things called stores, environments and continuations, we may have
something closer to operational semantics. (In fact we must have these things to handle global
variables, error handling, and procedures with parameters.)

Denotational Semantics is the representation of computer programs and data by mathematical
objects. Apart from a few small problems , it seems to be an ideal vehicle for proving programs to be8

correct. Let's look at several examples to get more insight.

1. The simplest data example:  a non-recursive data structure
Consider the following interpretation of integers in Pascal. Read M as “is interpreted as” or

“means mathematically.”

M (16) = 16

This seems trivial and uninteresting. But in Turbo Pascal we would also write the following, where $
means hexadecimal base.

M ($10) = 16

Now it is obvious that we intend the integers on the left to be syntactic objects in the computer
programming language. We intend that they mean, on the right, integers, elements of the set Z which
can be represented geometrically along the number line.

This simple example suggests two points of view that we could take about representing our
mathematical objects. We could purposely choose a notation which always shows that they are
different from the syntactic objects that they model, or we could  whenever possible choose a9

notation for the mathematical object that is identical to the syntactic object, treating the confusion as
an asset to simplify things, trusting you to be able to supply the information of whether it is the
syntax or the mathematical object that is in view. I think that the latter is clearer.

If we could always do that, the subject of program semantics would have no substance, but
there are many things that computer programs should mean that aren't represented in the syntax (like
stores, environments, and continuations). Already with representing simple data structures, there is a
problem:  the operations on integer should be represented modulo maxint; the operations on real
should be appropriately approximate arithmetic. Pascal integer is not mathematical integers; Pascal
real is not mathematical reals.

2. A harder data example:  a recursive data structure
At least in defining M on the integers, a finite thing is represented by a finite thing. When we

come to describing a linked list, even a finite list must be represented by an infinite object
mathematically. Consider the Pascal data type LinkedList as follows. What should it mean
mathematically?

type LinkedList = ^ Node;
     Node = record

   n:    integer;
   link: LinkedList
   end;

var  x: LinkedList;
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      Note the analogy here with a context-free grammar statement.10

     They don't deserve the credit, claims David Harel [1980] in an entertaining article that is deep both historically and11

technically.

We describe the meaning of a linked list of integers as a mathematical object L with the following
property, where N* = the set of all integers together with the null list.10

L = N* + N* x L

Is there such a mathematical object L?  No, if equality is to mean equality as sets. Yes, if it
represents an equivalence operation of a certain kind. We call L (and N, too) a denotational domain.
A list is then interpreted as an element of this domain. What kind of equivalence operation could = be
so that domains could be sets?  Dana Scott's contribution to the field of denotational semantics is to
describe L geometrically.

@ More precisely, = is topological equivalence of infinite lattices. More discussion of such
lattices in Section VI below.

Equations like L = A + A x L allow for the possibility of infinite data structures. Of course
we would never want to print one out, but using them is easy. For example a circular list [1, 1, 1,
1, ...] can be defined in Pascal. Data-driven (so-called “lazy”) evaluation of such an expression
would only generate as much of the list as needed at a time. Another example of a potentially infinite
data structure is an input stream from the keyboard.

The point of this linked list example is that the meaning of even finite data structures, if their
definition is given recursively, necessarily require and hence allow for potentially infinite data
structures.

3. Comparing an easy and hard program example:  recursion versus iteration
As Bohm and Jacopini showed, according to the folk wisdom , any computer program can be11

written using only sequence, if and while as control structures. Call such programs “flowchart
programs,” after Scott [1970]. Consider the following Pascal functions. The first is not a flowchart
program because it involves recursion; the second one is.

Example 11. function factorial1 (n: integer): integer;
begin

if n = 0 then factorial1 := 1
else factorial1 := n * factorial1 (n-1)

end;

Example 12. function factorial2 (n: integer): integer;
var p, i: integer;
begin

p := 1;
i := 0;
while i < n do begin

i := i + 1;
p := p * i
end;

factorial2 := p
end;

Note first that factorial2 uses assignment in an essential way, but factorial1  does not.
There is an assignment statement, but it wouldn't be necessary if we used an Algol or C language
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     Appropriately extending the definition of recursive functions to Boolean domains. The arguments are mostly12

combinatorial in nature, and straightforward.

syntax for return instead of Pascal's syntax, and if if returned an expression rather than relating
statements as it does in some computer languages, so we could write the following as the body of the
recursion.

return if n = 0 then 1 else n * f(n-1)

We want factorial1 and factorial2 to have as their meaning elements of N——>N, that
is, some mathematical functions from N to N, where we avoid writing the set as N  to emphasize thatN

not all the uncountable number of functions from N to N are to be selected, but only those that
preserve some structure as I described in Section III above.

Define a map M from Pascal to mathematics such that M(factorial1) = factorial1, the
mathematical factorial function. Let IfThenElse: B x N x N ——> N be a function of three variables,
one Boolean and two Integers with the following property

IfThenElse (true, a, b) = a
IfThenElse (false, a, b) = b.

Then define factorial1 = IfThenElse (n=0, 1, n * factorial1 (n-1)).

@ This is a recursive definition. It is only a slight variation on the definition of Example 6 in
Section III:  factorial1 is a partial recursive function.12

Here we assume that factorial1 is well-defined, and that the semantic function M does what we hope
it will on the Pascal operators -, *, =, and on function application.  Then this definition of the
meaning
M (factorial1) = factorial1 will be compositional in the sense described above.

In the case of factorial2, the situation is a bit more complicated, since while is not a
mathematical construction as are equality, multiplication, subtraction, and functional application. But
it can be shown that the following equations give a while loop a mathematical meaning as a
function:

M(+A,; +B,) = M(+B,) B M(+A,)
M(while +A, do +P,) = IfThenElse( M(+A,), M(+P,; while +A, do +P,), id).

Here +A,, +B, and +P, are metavariables ranging over pieces of program; the semicolon is the Pascal
sequence operator, B is function composition, and id is the identity function id(x) = x. Since the
meaning is given recursively, this definition of M on while has two problems. First, it violates
compositionality. The meaning of a while loop is not defined solely in terms of the meanings of its
pieces +A, and +P,. Second, what right do we have to say that there is any function, call it loop, at all
that satisfies this recursion relation, so that M(while +A, do +P,) = loop, and if so, that there is a
unique one?

@ That is exactly what is guaranteed by showing that the functions which are the
interpretations of Pascal functions form a complete lattice. Then the function loop can be
show to be a fixed point of a sequence of functions approximating it topologically,
guaranteed to exist by the Knaster-Tarski Theorem. A specific example of such a sequence of
functions is given after Example 13 below.
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In English, these equations say what we know intuitively that there are two cases in executing
a while loop. Either the condition is false, so we do nothing, or it is true and we execute the loop
once and then ask the question again. We interpret the meaning of an iteration to be a recursive
function that does the same thing as the iteration. In this respect, we are working backwards as
compared to what a compiler does in replacing recursion with hardware iteration.  We are replacing
iteration with recursion.

I did not say what the meaning of the assignment statements was because that would be too
hard for an introductory paper. Here though is a rough idea. An assignment statement could globally
change any memory location in the computer, hence if its meaning is to be regarded as a function,
then the function must map not just from integers to integers as the mathematical factorial function
does, but it must map from integers and stores to integers and stores, where a store is the
mathematical representation of the memory locations of the computer. That is why, as I said above in
Section II.B, assignment statements are the spaghetti-code of data structures. You probably already
knew that about the pointer data type (pointers can point anywhere), but since variables in a Pascal
function might be reference (i.e. VAR) or value parameters, the same argument holds for variables in
general. (In fact, value parameters give more problems denotationally than reference parameters, but
that discussion must await another time.)

@ VI. Denotational semantics as an information system
This Section assumes Part III above, and as such should be skipped on a first reading.

A. The functions which are the meanings of computer programs form a lattice.
I have skipped over the fact that the functions which we have been discussing above are not

functions whose domain is N, but only some of N. We say that such functions are “partial” functions.
It will be useful in what follows to assume that a partial function is a total function from N+{z} to
N+{z} where z represents in this case “divergence.”  We have added z to the domain, with the
stipulation that f(z) = z for all f.

Now I am prepared to tell you how the meanings of computer programs as functions from N
+ {z} ——> N + {z} form a lattice. It's enough to define the partial order, ¥. Consider the Pascal
function mystery defined as follows:

Example 13. function mystery (n: integer): integer;
begin

if n = 0 then mystery := 1
else mystery := n * f (n-1)

end;

where f is a function which computes the same thing that factorial1 does for n < 100, but
for n >= 100, f diverges (loops infinitely).

We shall say that F ¥ G if G “computes more” than F. That is, F(x) = G(x) for all x such that
F(x) � z. Or, F diverges everywhere that G does, and possibly at other places as well. Call the
meaning of mystery mystery; that is, M(mystery) = mystery. Then mystery ¥ factorial1. This
reminds me of the room full of monkeys at typewriters one of which typed Hamlet's soliloquy
beginning “To be or not to be; that is the igshmifence.”  Shakespeare and the monkeys agree for some
starting values. mystery and factorial1 agree for some starting values of n, and where they disagree,
the function factorial1 computes more than the function mystery.

Now ¥ is a partial order on a set of mathematical functions from N+{z} to N+{z}. Is the
partial order a lattice?  Indeed, it is even an information system. Here I am using z in the range to
mean that the corresponding Pascal function diverges. The appropriate set of mathematical functions
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      Which we throw in just so that we have a lattice.  The justification for including it is beyond the scope of this paper.13

You may read it “overdetermined” and assume that it is just tacked on at the top of everything else just so that I can talk
about lattices instead of about so-called complete partial orders, which would make y unnecessary.  This is like solving
the equation x -2=0 in the reals to avoid solving it in the smallest possible extension of Q, namely Q(/2).  Sometimes2

it's clearer pedagogically to have more structure than you need.

to model Pascal functions is the set of partial recursive functions.

Define the mathematical function mystery as follows. Notice that there is a different function
mystery for each choice of the function f.

mystery (n) = IfThenElse(n=0, 1, n * f(n-1))

Define a functional M on the domain of partial recursive functions, the domain extended to require
that for every recursive function p, p(z) = z,

M: (N+{z}——>N+{z}) ——> (N+{z}——>N+{z}),

as follows. M(f) = mystery, where of course mystery depends on f. Then M(factorial1) = factorial1,
which is to say that factorial1 is a fixed point of M.

I had to include z in the range because f is not in general defined on all of N, just as factorial
is not defined for negative integers. I claim that ¥ and z and y  together define a lattice to which all13

of Section III applies.

A Pascal function like factorial2 that is iterative instead of recursive can be given as a
meaning a mathematical function factorial2 which can be defined as a limit of functions like mystery
which agree with factorial2 on larger and larger initial segments of the natural numbers, just as the
data structure [1, 1, 1, 1, ...] is the limit of finite data structures.

Contrast the operational approach to semantics with the denotational approach on this point.
In the operational approach, since the hardware with which we are familiar is good at iteration and
not designed for recursion, we model recursive operations by iteration (with the help of a stack of
activation records to keep track of the recursion) so that they can be executed. Conversely in the
denotational approach, we model iterative operations by recursive functions, so that we can apply
mathematical techniques to the results.

B. To model computer programs denotationally, certain things are not semantically simple.

1. Functional application must allow for the possibility of a function being in its own domain.
The way to handle this semantically is to treat functions and data in a uniform way, which so-

called functional languages do well. In a functional language, functions are “first-class objects.” 
They can not only be passed as arguments (even Pascal permits that) but they can be returned as
values of another function (which Pascal does not permit).

Is this necessary if you don't otherwise want to pass functions as arguments?  Yes. Here's an
idea why. You have probably been taught as a computer programmer that recursion is inefficient, so
you are reluctant to use it. It need not be. A sequence of recursive calls can blow a computer's stack
of activation records. But suppose that the recursive call is the last thing in the function. Then a good
compiler can convert this so-called tail-recursion into iteration automatically. Then there is no need to
return to the calling procedure for further computation, so there is nothing to save on the stack. In
factorial1 of Example 11, the recursion is tail recursion. It can automatically be converted into
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factorial2 of Example 12.

What if there were a way to make recursion efficient even if it isn't tail recursion?  The
solution in a language which allows functions as first class data is to pass to a function not only the
data needed, but a function, called in the literature a continuation, which is the rest of the
computation to be done by the calling procedure!  Then there will be no need to return to the call
point in the original function to continue:  we can just continue using by the continuation if it is
necessary.

I said “if it is necessary” because there is one case where the continuation is irrelevant, that of
the code following a go to. So go to allows the continuation to be discarded right away.

As a simple special case of a continuation which doesn't even require functions as
parameters, consider just saving the resulting computation that the continuation would do in an
accumulator. Then factorial becomes a function of two arguments, an integer and an accumulator.
Here is what such a version might look like.

Example 14. function factorial3 (n: integer):  integer;
begin

accumulator := 1;
factorial3 := factor (n, accumulator);

end;

where

function factor (var n: integer; var cont: integer): integer;
begin

if n = 0 then factor   := cont
else begin

n    := n - 1;
cont := n * fact(n,cont)
end

end;

Continuations show that recursion, even if not tail recursion, can be handled efficiently by current
hardware architecture. As Guy Steele says in an MIT memo, “Lambda, the ultimate imperative,” a
machine based on recursive functions need not be inefficient.

From Section III above, we see that any information system D can be embedded in a function
4 4 4 4space D  with the property that D  = D ——>D .  So a mathematical model is available for such

functions as continuations which might have themselves in their domain.

2. Pascal programs are not referentially transparent.
That is, if equals are substituted for equals, the results are not necessarily equal. In Pascal for

example,

if f(3) = f(3) then writeln ('Here') else writeln ('There')

may not write 'Here' every time, should f have the side-effect of updating a global variable. As a
consequence, Pascal can't be its own semantics if we want our semantics to be compositional.

This frustrates the goal of program transformation, for the following two statements are only
equivalent in Pascal if f doesn't update x:
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      I am thinking of Von Neumann, Bernays, and Gödel's set theory, of various type theories, hereditarily finite models,14

and so on. One conference participant pointed out that Russell's famous 1905 letter to Frege was actually anticipated by
Zermelo in 1902.

i. if f(x) then y := g(x) else y := g(x)

ii. y := g(x)

From a theoretical point of view, the way to handle this problem semantically is to bring the
whole environment along in the denotation of a Pascal function f if necessary.

From a practical point of view, this is the same kind of problem that keeps execution on a
parallel machine from being easy.

3. Infinite objects are necessary for functions as well as for data.
How does the modest finite syntax of computer programs get to require such complicated

infinite objects to model them as topological spaces of monotone continuous functions?  The reason
for the difficulty and the obscurity of the subject of denotational semantics is much the same as the
crisis in mathematical logic which Russell's Paradox created in 1905:  the functions that we
intuitively want are functions which have the property that they include themselves in their domain.
Like sets that contain themselves as members, or barbers who shave all those in town who don't shave
themselves, something has to give. Traditional set theory doesn't allow that. What Russell and Gödel
did to Frege's set theory , Scott did to Strachey's denotational semantics. An intuitive idea was at14

hand, but when the formalization was made, the story was much more complicated than anticipated.
Scott's solution to the problems of denotational semantics uses infinite objects so that they can have
the property that they are isomorphic to a proper subset of themselves.

Here is one more version of a factorial function that I shall write with Pascal syntax, but
which is illegal in most versions of Pascal. It is not illegal in various functional languages like TLC
Lisp or in Scheme. It should not be illegal in a modern computer language.

Example 15. function factorial4 (n: integer): integer;
begin

factorial4 := f (f, n)
end;

where

function f( function g: integer; m: integer): integer;
begin

if m = 0 then f := 1
 else f := m * g (g, m-1)

end;

Here I have made the continuation g of f explicit. As you can see, a function might very legitimately
in this theory have itself as one of its arguments.

VII. The moral of the story:  a defense of functional languages

A. “I have a dream.”  Several style points in traditional programming languages are really folk
wisdom about writing programs that are easy to prove correct. Use them!  One of the goals of
research in semantics of computer languages in my estimation is to eliminate the need for advice
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about style by creating

a language in which only programs in good style can be written!

Here are some examples of good style points that have as their underlying motive a desire for clean
(easy to understand, unambiguous) semantics.

Avoid goto
Be clear not clever
Avoid global variables
Isolate input and output in their own separate procedures
Select the highest level programming language that you can which most matches the

problem domain
Don't modify loop variables
Avoid implementation-dependent features

—and others that you could add

B. Myths about functional languages

1. A functional language is computationally expensive.  Not necessarily!  If they are, it is a
problem that can be solved by changing the hardware on which the language is run. These languages
are traditionally interpreted rather than compiled just because hardware is not optimized for them, so
they haven't received widespread use. Texas Instruments even sells a chip which executes the Lisp
dialect Scheme in the hardware, a dialect in which the above plan can be carried out. In fact,
semantically clean functional language can actually take advantage of parallelism more easily than
current imperative third-generation languages.

2. The functional programming style is hard to understand.  Every computer scientist knows
about the turgid style of functional programming illustrated by APL one-liners. The intention of APL
authors who use one-liners is a good one:  to avoid updating individual variables. Functional
programs need not be hard to understand, however, as evidenced by the popularity and power of
spreadsheets, which rely on such functional constructions as a statement if, and which simplify the
relationship between store and output by displaying all stores.

3. Functional languages are inflexible.  I'm a COBOL programmer, you say, and I need to be closer
to the machine hardware, especially as it relates to the variety of input and output formats that I must
manage. Perhaps you will think of this paper then as an encouragement to think about moving to a
language like SQL. SQL can be optimized to compete with COBOL for speed.  SQL is a more
functional language:  it treats tables of data as whole-data structures.

In conclusion, I have argued that if the semantics of a computer program is ultimately to be
useful, then it must conform to the requirements of being geometric, canonical, and compositional.
And I have argued that progress will be made in Computer Science if the programming languages of
the future move in the direction of being more mathematical (hence functional) to allow them to be
semantically cleaner.
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