Basics of Compiler Design

Extended edition

Torben Agidius Mogensen

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF COPENHAGEN

Published through lulu.com.

© Torben AKgidius Mogensen 2000 — 2008

torbenm@diku.dk

Department of Computer Science
University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen
DENMARK

Book homepage:
http://www.diku.dk/~torbenm/Basics

First published 2000
This edition: July 25, 2008

Chapter 1

Introduction

1.1 What is a compiler?

In order to reduce the complexity of designing and building computers,
nearly all of these are made to execute relatively simple commands (but
do so very quickly). A program for a computer must be built by com-
bining these very simple commands into a program in what is called
machine language. Since this is a tedious and error-prone process most
programming is, instead, done using a high-level programming language.
This language can be very different from the machine language that the
computer can execute, so some means of bridging the gap is required.
This is where the compiler comes in.

A compiler translates (or compiles) a program written in a high-
level programming language that is suitable for human programmers into
the low-level machine language that is required by computers. During
this process, the compiler will also attempt to spot and report obvious
programmer mistakes.

Using a high-level language for programming has a large impact on
how fast programs can be developed. The main reasons for this are:

e Compared to machine language, the notation used by program-
ming languages is closer to the way humans think about problems.

e The compiler can spot some obvious programming mistakes.

e Programs written in a high-level language tend to be shorter than
equivalent programs written in machine language.

Another advantage of using a high-level level language is that the same

2 CHAPTER 1. INTRODUCTION

program can be compiled to many different machine languages and,
hence, be brought to run on many different machines.

On the other hand, programs that are written in a high-level language
and automatically translated to machine language may run somewhat
slower than programs that are hand-coded in machine language. Hence,
some time-critical programs are still written partly in machine language.
A good compiler will, however, be able to get very close to the speed of
hand-written machine code when translating well-structured programs.

1.2 The phases of a compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure
the work. A typical way of doing this is to split the compilation into
several phases with well-defined interfaces. Conceptually, these phases
operate in sequence (though in practice, they are often interleaved), each
phase (except the first) taking the output from the previous phase as
its input. It is common to let each phase be handled by a separate
module. Some of these modules are written by hand, while others may
be generated from specifications. Often, some of the modules can be
shared between several compilers.

A common division into phases is described below. In some com-
pilers, the ordering of phases may differ slightly, some phases may be
combined or split into several phases or some extra phases may be in-
serted between those mentioned below.

Lexical analysis This is the initial part of reading and analysing the
program text: The text is read and divided into tokens, each of
which corresponds to a symbol in the programming language, e.g.,
a variable name, keyword or number.

Syntax analysis This phase takes the list of tokens produced by the
lexical analysis and arranges these in a tree-structure (called the
syntax tree) that reflects the structure of the program. This phase
is often called parsing.

Type checking This phase analyses the syntax tree to determine if
the program violates certain consistency requirements, e.g., if a
variable is used but not declared or if it is used in a context that
doesn’t make sense given the type of the variable, such as trying
to use a boolean value as a function pointer.

1.3. INTERPRETERS 3

Intermediate code generation The program is translated to a sim-
ple machine-independent intermediate language.

Register allocation The symbolic variable names used in the interme-
diate code are translated to numbers, each of which corresponds
to a register in the target machine code.

Machine code generation The intermediate language is translated to
assembly language (a textual representation of machine code) for
a specific machine architecture.

Assembly and linking The assembly-language code is translated into
binary representation and addresses of variables, functions, etc.,
are determined.

The first three phases are collectively called the frontend of the compiler
and the last three phases are collectively called the backend. The middle
part of the compiler is in this context only the intermediate code gener-
ation, but this often includes various optimisations and transformations
on the intermediate code.

Each phase, through checking and transformation, establishes stronger
invariants on the things it passes on to the next, so that writing each
subsequent phase is easier than if these have to take all the preceding into
account. For example, the type checker can assume absence of syntax
errors and the code generation can assume absence of type errors.

Assembly and linking are typically done by programs supplied by
the machine or operating system vendor, and are hence not part of the
compiler itself, so we will not further discuss these phases in this book.

1.3 Interpreters

An interpreter is another way of implementing a programming language.
Interpretation shares many aspects with compiling. Lexing, parsing and
type-checking are in an interpreter done just as in a compiler. But
instead of generating code from the syntax tree, the syntax tree is pro-
cessed directly to evaluate expressions and execute statements, and so
on. An interpreter may need to process the same piece of the syntax tree
(for example, the body of a loop) many times and, hence, interpretation
is typically slower than executing a compiled program. But writing an
interpreter is often simpler than writing a compiler and the interpreter is
easier to move to a different machine (see chapter 11), so for applications
where speed is not of essence, interpreters are often used.

4 CHAPTER 1. INTRODUCTION

Compilation and interpretation may be combined to implement a
programming language: The compiler may produce intermediate-level
code which is then interpreted rather than compiled to machine code. In
some systems, there may even be parts of a program that are compiled to
machine code, some parts that are compiled to intermediate code, which
is interpreted at runtime while other parts may be kept as a syntax tree
and interpreted directly. Each choice is a compromise between speed and
space: Compiled code tends to be bigger than intermediate code, which
tend to be bigger than syntax, but each step of translation improves
running speed.

Using an interpreter is also useful during program development, where
it is more important to be able to test a program modification quickly
rather than run the program efficiently. And since interpreters do less
work on the program before execution starts, they are able to start run-
ning the program more quickly. Furthermore, since an interpreter works
on a representation that is closer to the source code than is compiled
code, error messages can be more precise and informative.

We will not discuss interpreters in any detail in this book, except in
relation to bootstrapping in chapter 11. A good introduction to inter-
preters can be found in [2].

1.4 Why learn about compilers?

Few people will ever be required to write a compiler for a general-purpose

language like C, Pascal or SML. So why do most computer science in-

stitutions offer compiler courses and often make these mandatory?
Some typical reasons are:

a) It is considered a topic that you should know in order to be “well-
cultured” in computer science.

b) A good craftsman should know his tools, and compilers are impor-
tant tools for programmers and computer scientists.

¢) The techniques used for constructing a compiler are useful for other
purposes as well.

d) There is a good chance that a programmer or computer scientist
will need to write a compiler or interpreter for a domain-specific
language.

1.5. THE STRUCTURE OF THIS BOOK 5

The first of these reasons is somewhat dubious, though something can
be said for “knowing your roots”, even in such a hastily changing field as
computer science.

Reason “b” is more convincing: Understanding how a compiler is
built will allow programmers to get an intuition about what their high-
level programs will look like when compiled and use this intuition to
tune programs for better efficiency. Furthermore, the error reports that
compilers provide are often easier to understand when one knows about
and understands the different phases of compilation, such as knowing
the difference between lexical errors, syntax errors, type errors and so
on.

The third reason is also quite valid. In particular, the techniques used
for reading (lexing and parsing) the text of a program and converting this
into a form (abstract syntaz) that is easily manipulated by a computer,
can be used to read and manipulate any kind of structured text such as
XML documents, address lists, etc..

Reason “d” is becoming more and more important as domain spe-
cific languages (DSLs) are gaining in popularity. A DSL is a (typically
small) language designed for a narrow class of problems. Examples are
data-base query languages, text-formatting languages, scene description
languages for ray-tracers and languages for setting up economic simula-
tions. The target language for a compiler for a DSL may be traditional
machine code, but it can also be another high-level language for which
compilers already exist, a sequence of control signals for a machine,
or formatted text and graphics in some printer-control language (e.g.
PostScript). Even so, all DSL compilers will share similar front-ends for
reading and analysing the program text.

Hence, the methods needed to make a compiler front-end are more
widely applicable than the methods needed to make a compiler back-
end, but the latter is more important for understanding how a program
is executed on a machine.

1.5 The structure of this book

The first part of the book describes the methods and tools required
to read program text and convert it into a form suitable for computer
manipulation. This process is made in two stages: A lexical analysis
stage that basically divides the input text into a list of “words”. This is
followed by a syntax analysis (or parsing) stage that analyses the way
these words form structures and converts the text into a data structure

6 CHAPTER 1. INTRODUCTION

that reflects the textual structure. Lexical analysis is covered in chapter
2 and syntactical analysis in chapter 3.

The second part of the book (chapters 4 — 9) covers the middle part
and back-end of the compiler, where the program is converted into ma-
chine language. Chapter 4 covers how definitions and uses of names
(identifiers) are connected through symbol tables. In chapter 5, this is
used to type-check the program. In chapter 6, it is shown how expres-
sions and statements can be compiled into an intermediate language, a
language that is close to machine language but hides machine-specific
details. In chapter 7, it is discussed how the intermediate language can
be converted into “real” machine code. Doing this well requires that the
registers in the processor are used to store the values of variables, which
is achieved by a register allocation process, as described in chapter 8.
Up to this point, a “program” has been what corresponds to the body of
a single procedure. Procedure calls and nested procedure declarations
add some issues, which are discussed in chapter 9. Chapter 10 deals with
analysis and optimisation.

Finally, chapter 11 will discuss the process of bootstrapping a com-
piler, i.e, using a compiler to compile itself.

Chapter 10 (on analysisand optimisation)wasnot found in editionsbefore
April2008, which is why thelatesteditionsare called “extended”

1.7 Acknowledgements

The author wishes to thank all people who have been helpful in making this
book a reality This includes the studentswho have been exposed to draft
versions of the book at the compiler courses“ Dat 1E” and “ Over-saettere”at
DIKU, and who have found numerous typos and other errors in the earlier
versions.I would also like to thanktheinstructorsat Dat 1E and Oversattere,
who havepointed out placeswhere thingswere not as clear as theycould be. I
am extremelygratefulto the people who in 2000 read partsof or all of the first
draftand madehelpful suggestions.

8 CHAPTER 1. INTRODUCTION

1.8 Permission to use

Permission to copy and print for personal use is granted. If you, as a
lecturer, want to print the book and sell it to your students, you can do
so if you only charge the printing cost. If you want to print the book
and sell it at profit, please contact the author at torbenm@diku.dk and
we will find a suitable arrangement.

In all cases, if you find any misprints or other errors, please contact
the author at torbenm@diku.dk.

See also the book homepage: http://www.diku.dk/~torbenm/Basics.

Chapter 2

Lexical Analysis

2.1 Introduction

The word “lexical” in the traditional sense means “pertaining to words”.
In terms of programming languages, words are objects like variable
names, numbers, keywords efc. Such words are traditionally called to-
kens.

A lezxical analyser, or lexer for short, will as its input take a string
of individual letters and divide this string into tokens. Additionally, it
will filter out whatever separates the tokens (the so-called white-space),
i.e., lay-out characters (spaces, newlines etc.) and comments.

The main purpose of lexical analysis is to make life easier for the
subsequent syntax analysis phase. In theory, the work that is done
during lexical analysis can be made an integral part of syntax analysis,
and in simple systems this is indeed often done. However, there are
reasons for keeping the phases separate:

e FEfficiency: A lexer may do the simple parts of the work faster than
the more general parser can. Furthermore, the size of a system
that is split in two may be smaller than a combined system. This
may seem paradoxical but, as we shall see, there is a non-linear
factor involved which may make a separated system smaller than
a combined system.

e Modularity: The syntactical description of the language need not
be cluttered with small lexical details such as white-space and
comments.

e Tradition: Languages are often designed with separate lexical and
syntactical phases in mind, and the standard documents of such

10 CHAPTER 2. LEXICAL ANALYSIS

languages typically separate lexical and syntactical elements of the
languages.

It is usually not terribly difficult to write a lexer by hand: You first read
past initial white-space, then you, in sequence, test to see if the next
token is a keyword, a number, a variable or whatnot. However, this is
not a very good way of handling the problem: You may read the same
part of the input repeatedly while testing each possible token and in
some cases it may not be clear where the next token ends. Furthermore,
a handwritten lexer may be complex and difficult to maintain. Hence,
lexers are normally constructed by lezer generators, which transform
human-readable specifications of tokens and white-space into efficient
programs.

We will see the same general strategy in the chapter about syntax
analysis: Specifications in a well-defined human-readable notation are
transformed into efficient programs.

For lexical analysis, specifications are traditionally written using reg-
ular expressions: An algebraic notation for describing sets of strings.
The generated lexers are in a class of extremely simple programs called
finite automata.

This chapter will describe regular expressions and finite automata,
their properties and how regular expressions can be converted to finite
automata. Finally, we discuss some practical aspects of lexer generators.

2.2 Regular expressions

The set of all integer constants or the set of all variable names are sets of
strings, where the individual letters are taken from a particular alphabet.
Such a set of strings is called a language. For integers, the alphabet
consists of the digits 0-9 and for variable names the alphabet contains
both letters and digits (and perhaps a few other characters, such as
underscore).

Given an alphabet, we will describe sets of strings by regular expres-
stons, an algebraic notation that is compact and easy for humans to
use and understand. The idea is that regular expressions that describe
simple sets of strings can be combined to form regular expressions that
describe more complex sets of strings.

When talking about regular expressions, we will use the letters (r, s
and ?) in italics to denote unspecified regular expressions. When letters
stand for themselves (i.e., in regular expressions that describe strings
using these letters) we will use typewriter font, e.g., a or b. Hence, when

2.2. REGULAR EXPRESSIONS

11

Regular
expression

Language (set of strings)

Informal description

a

oy

The set consisting of
the one-letter string

W

a

{7}

The set containing the
empty string.

s|¢

L(s) UL(D

Strings from both lan-
guages

st

{vw | v € L(s),w € L(t)}

Strings constructed by
concatenating a string
from the first language
with a string from the
second language.

Note: In set-formulas,
“" isn’t a part of a
regular expression, but
part of the set-builder
notation and reads as
“where”.

{YU{vw | v € L(s), w € L(s*)}

Each string in the lan-
guage is a concatena-
tion of any number of
strings in the language
of s.

Figure 2.1: Regular expressions

we say, e.g., “The regular expression s” we mean the regular expression
that describes a single one-letter string “s”, but when we say “The regular
expression §’, we mean a regular expression of any form which we just
happen to call s. We use the notation L(s) to denote the language (i.e.,
set of strings) described by the regular expression s. For example, L(a)
is the set {“a”}.

Figure 2.1 shows the constructions used to build regular expressions
and the languages they describe:

o A single letter describes the language that has the one-letter string

consisting of that letter as its only element.

12 CHAPTER 2. LEXICAL ANALYSIS

e The symbol € (the Greek letter epsilon) describes the language
that consists solely of the empty string. Note that this is not the
empty set of strings (see exercise 2.10).

e s|t (pronounced “s or ¢’) describes the union of the languages de-
scribed by s and t.

e st (pronounced “s #’) describes the concatenation of the languages
L(s) and L(?), i.e., the sets of strings obtained by taking a string
from L(s) and putting this in front of a string from L(#). For
example, if L(s) is {“a”, “b”} and L(¢) is {“c”, “d”}, then L(st) is
the Set {“acﬂ’ ((ad777 “bC”’ ((bd”}.

e The language for s* (pronounced “s star”) is described recursively:
It consists of the empty string plus whatever can be obtained by
concatenating a string from L(s) to a string from L(s*). This
is equivalent to saying that L(s*) consists of strings that can be
obtained by concatenating zero or more (possibly different) strings
from L(s). If, for example, L(s) is {“a”, “b”} then L(s*) is {*”, “a”,
“b”, “aa”, “ab”, “ba”, “bb”, “aad’, ...}, i.e., any string (including
the empty) that consists entirely of as and bs.

Note that while we use the same notation for concrete strings and regular
expressions denoting one-string languages, the context will make it clear
which is meant. We will often show strings and sets of strings without
using quotation marks, e.g., write {a, bb} instead of {“a”, “bb”}. When
doing so, we will use € to denote the empty string, so the example from
L(s*) above is written as {e, a, b, aa, ab, ba, bb, aaa, ... }. The letters
u, v and w in italics will be used to denote unspecified single strings,
i.e., members of some language. As an example, abw denotes any string
starting with ab.

Precedence rules

When we combine different constructor symbols, e.g., in the regular
expression alab*, it isn’t a priori clear how the different subexpressions
are grouped. We can use parentheses to make the grouping of symbols
clear. Additionally, we use precedence rules, similar to the algebraic
convention that 3 4+ 4 % 5 means 3 added to the product of 4 and 5 and
not multiplying the sum of 3 and 4 by 5. For regular expressions, we
use the following conventions: * binds tighter than concatenation, which
binds tighter than alternative (]). The example alab® from above, hence,
is equivalent to a|(a(b*)).

2.2. REGULAR EXPRESSIONS 13

The | operator is associative and commutative (as it is based on set
union, which has these properties). Concatenation is associative (but
obviously not commutative) and distributes over |. Figure 2.2 shows
these and other algebraic properties of regular expressions, including
definitions of some shorthands introduced below.

2.2.1 Shorthands

While the constructions in figure 2.1 suffice to describe e.g., number
strings and variable names, we will often use extra shorthands for con-
venience. For example, if we want to describe non-negative integer con-
stants, we can do so by saying that it is one or more digits, which is
expressed by the regular expression

(011]2[3[45]6[7(8|9)(0[1|2[3|4[5]6|7[8]9)"

The large number of different digits makes this expression rather ver-
bose. It gets even worse when we get to variable names, where we must
enumerate all alphabetic letters (in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. Sequences of
letters within square brackets represent the set of these letters. For
example, we use [abO1] as a shorthand for a|b|0|1. Additionally, we
can use interval notation to abbreviate [0123456789] to [0-9]. We can
combine several intervals within one bracket and for example write [a-
zA-Z] to denote all alphabetic letters in both lower and upper case.

When using intervals, we must be aware of the ordering for the sym-
bols involved. For the digits and letters used above, there is usually no
confusion. However, if we write, e.g., [0-z] it is not immediately clear
what is meant. When using such notation in lexer generators, standard
ASCII or ISO 8859-1 character sets are usually used, with the hereby
implied ordering of symbols. To avoid confusion, we will use the interval
notation only for intervals of digits or alphabetic letters.

Getting back to the example of integer constants above, we can now
write this much shorter as [0-9][0-9]*.

Since s* denotes zero or more occurrences of s, we needed to write the
set of digits twice to describe that one or more digits are allowed. Such
non-zero repetition is quite common, so we introduce another shorthand,
st to denote one or more occurrences of s. With this notation, we can
abbreviate our description of integers to [0-9]*. On a similar note, it is
common that we can have zero or one occurrence of something (e.g., an
optional sign to a number). Hence we introduce the shorthand s? for
sle. * and ? bind with the same precedence as *.

14 CHAPTER 2. LEXICAL ANALYSIS

(rls)[t = rlslt = rl(s|t)
slt = tls
sls = s
s?T = sle
(rs)t = rst = r(st)
s€ = s = €S
r(s|t) = rs|rt
(r|s)t = rt|st
s*s* = s*
ss* = st = s*s

Figure 2.2: Some algebraic properties of regular expressions

We must stress that these shorthands are just that. They don’t
add anything to the set of languages we can describe, they just make it
possible to describe a language more compactly. In the case of sT, it
can even make an exponential difference: If T is nested n deep, recursive
expansion of s* to ss* yields 2" — 1 occurrences of * in the expanded
regular expression.

2.2.2 Examples

We have already seen how we can describe non-negative integer constants
using regular expressions. Here are a few examples of other typical
programming language elements:

Keywords. A keyword like if is described by a regular expression that
looks exactly like that keyword, e.g., the regular expression if (which is
the concatenation of the two regular expressions i and f).

Variable names. In the programming language C, a variable name
consists of letters, digits and the underscore symbol and it must be-
gin with a letter or underscore. This can be described by the regular
expression [a-zA-Z_][a-zA-Z_0-9]*.

2.2. REGULAR EXPRESSIONS 15

Integers. An integer constant is an optional sign followed by a non-
empty sequence of digits: [+-]?[0-9]". In some languages, the sign is
a separate symbol and not part of the constant itself. This will allow
whitespace between the sign and the number, which is not possible with
the above.

Floats. A floating-point constant can have an optional sign. After
this, the mantissa part is described as a sequence of digits followed by a
decimal point and then another sequence of digits. Either one (but not
both) of the digit sequences can be empty. Finally, there is an optional
exponent part, which is the letter e (in upper or lower case) followed by
an (optionally signed) integer constant. If there is an exponent part to
the constant, the mantissa part can be written as an integer constant
(i.e., without the decimal point). Some examples: 3.14 -3. .23 3e+4
11.22e-3.

This rather involved format can be described by the following regular
expression:

[+-12((([0-9] - [0-9]"]. [0-9] ") ([eE][+-]?[0-9]")?)|[0-9] " [eE][+-]?[0-9])

This regular expression is complicated by the fact that the exponent is
optional if the mantissa contains a decimal point, but not if it doesn’t
(as that would make the number an integer constant). We can make
the description simpler if we make the regular expression for floats also
include integers, and instead use other means of distinguishing integers
from floats (see section 2.9 for details). If we do this, the regular expres-
sion can be simplified to

[+-17(([0-9] " (- [0-9]")?]. [0-9]) ([eE][+-]?[0-9]")?)

String constants. A string constant starts with a quotation mark
followed by a sequence of symbols and finally another quotation mark.
There are usually some restrictions on the symbols allowed between the
quotation marks. For example, line-feed characters or quotes are typi-
cally not allowed, though these may be represented by special “escape”
sequences of other characters, such as "\n\n" for a string containing two
line-feeds. As a (much simplified) example, we can by the following reg-
ular expression describe string constants where the allowed symbols are
alphanumeric characters and sequences consisting of the backslash sym-
bol followed by a letter (where each such pair is intended to represent a
non-alphanumeric symbol):

16 CHAPTER 2. LEXICAL ANALYSIS

"([a-zA-20-9]|\[a-zA-Z])*"

2.3 Nondeterministic finite automata

In our quest to transform regular expressions into efficient programs,
we use a stepping stone: Nondeterministic finite automata. By their
nondeterministic nature, these are not quite as close to “real machines”
as we would like, so we will later see how these can be transformed into
deterministic finite automata, which are easily and efficiently executable
on normal hardware.

A finite automaton is, in the abstract sense, a machine that has a
finite number of states and a finite number of {ransitions between these.
A transition between states is usually labelled by a character from the
input alphabet, but we will also use transitions marked with €, the so-
called epsilon transitions.

A finite automaton can be used to decide if an input string is a
member in some particular set of strings. To do this, we select one of
the states of the automaton as the starting state. We start in this state
and in each step, we can do one of the following:

e Follow an epsilon transition to another state, or

e Read a character from the input and follow a transition labelled
by that character.

When all characters from the input are read, we see if the current state
is marked as being accepting. If so, the string we have read from the
input is in the language defined by the automaton.

We may have a choice of several actions at each step: We can choose
between either an epsilon transition or a transition on an alphabet char-
acter, and if there are several transitions with the same symbol, we can
choose between these. This makes the automaton nondeterministic, as
the choice of action is not determined solely by looking at the current
state and input. It may be that some choices lead to an accepting state
while others do not. This does, however, not mean that the string is
sometimes in the language and sometimes not: We will include a string
in the language if it is possible to make a sequence of choices that makes
the string lead to an accepting state.

2.3. NONDETERMINISTIC FINITE AUTOMATA 17

You can think of it as solving a maze with symbols written in the
corridors. If you can find the exit while walking over the letters of the
string in the correct order, the string is recognized by the maze.

We can formally define a nondeterministic finite automaton by:

Definition 2.1 A nondeterministic finite automaton consists of a set
S of states. One of these states, so € S, is called the starting state of
the automaton and o subset ' C S of the states are accepting states.
Additionally, we have a set T of transitions. Fach transition t connects
a pair of states sy and so and is labelled with a symbol, which is either
a character c from the alphabet 3, or the symbol e, which indicates an
epsilon-transition. A transition from state s to state t on the symbol ¢
15 written as s°t.

Starting states are sometimes called initial states and accepting states
can also be called final states (which is why we use the letter F' to
denote the set of accepting states). We use the abbreviations FA for
finite automaton, NFA for nondeterministic finite automaton and (later
in this chapter) DFA for deterministic finite automaton.

We will mostly use a graphical notation to describe finite automata.
States are denoted by circles, possibly containing a number or name that
identifies the state. This name or number has, however, no operational
significance, it is solely used for identification purposes. Accepting states
are denoted by using a double circle instead of a single circle. The initial
state is marked by an arrow pointing to it from outside the automaton.

A transition is denoted by an arrow connecting two states. Near its
midpoint, the arrow is labelled by the symbol (possibly €) that triggers
the transition. Note that the arrow that marks the initial state is not a
transition and is, hence, not marked by a symbol.

Repeating the maze analogue, the circles (states) are rooms and the
arrows (transitions) are one-way corridors. The double circles (accepting
states) are exits, while the unmarked arrow to the starting state is the
entrance to the maze.

Figure 2.3 shows an example of a nondeterministic finite automaton
having three states. State 1 is the starting state and state 3 is accepting.
There is an epsilon-transition from state 1 to state 2, transitions on the
symbol a from state 2 to states 1 and 3 and a transition on the symbol
b from state 1 to state 3. This NFA recognises the language described
by the regular expression a*(alb). As an example, the string aab is
recognised by the following sequence of transitions:

18 CHAPTER 2. LEXICAL ANALYSIS

from | to | by
1 2 €
2 1 a
1 2 €
2 1 a
1 3| b

At the end of the input we are in state 3, which is accepting. Hence, the
string is accepted by the NFA. You can check this by placing a coin at
the starting state and follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we
are in state 2 and the next symbol is an a, we can, when reading this,
either go to state 1 or to state 3. Likewise, if we are in state 1 and the
next symbol is a b, we can either read this and go to state 3 or we can use
the epsilon transition to go directly to state 2 without reading anything.
If we in the example above had chosen to follow the a-transition to
state 3 instead of state 1, we would have been stuck: We would have
no legal transition and yet we would not be at the end of the input.
But, as previously stated, it is enough that there exists a path leading
to acceptance, so the string aab is still accepted.

A program that decides if a string is accepted by a given NFA will
have to check all possible paths to see if any of these accepts the string.
This requires either backtracking until a successful path found or si-
multaneously following all possible paths, both of which are too time-
consuming to make NFAs suitable for efficient recognisers. We will,
hence, use NFAs only as a stepping stone between regular expressions
and the more efficient DFAs. We use this stepping stone because it
makes the construction simpler than direct construction of a DFA from
a regular expression.

Figure 2.3: Example of an NFA

2.4. CONVERTING A REGULAR EXPRESSION TO AN NFA 19

2.4 Converting a regular expression to an NFA

We will construct an NFA compositionally from a regular expression,
i.e., we will construct the NFA for a composite regular expression from
the NFAs constructed from its subexpressions.

To be precise, we will from each subexpression construct an NFA
fragment and then combine these fragments into bigger fragments. A
fragment is not a complete NFA, so we complete the construction by
adding the necessary components to make a complete NFA.

An NFA fragment consists of a number of states with transitions
between these and additionally two incomplete transitions: One point-
ing into the fragment and one pointing out of the fragment. The in-
coming half-transition is not labelled by a symbol, but the outgoing
half-transition is labelled by either € or an alphabet symbol. These half-
transitions are the entry and exit to the fragment and are used to connect
it to other fragments or additional “glue” states.

Construction of NFA fragments for regular expressions is shown in
figure 2.4. The construction follows the structure of the regular expres-
sion by first making NFA fragments for the subexpressions and then
joining these to form an NFA fragment for the whole regular expres-
sion. The NFA fragments for the subexpressions are shown as dotted
ovals with the incoming half-transition on the left and the outgoing half-
transition on the right.

When an NFA fragment has been constructed for the whole regu-
lar expression, the construction is completed by connecting the outgo-
ing half-transition to an accepting state. The incoming half-transition
serves to identify the starting state of the completed NFA. Note that
even though we allow an NFA to have several accepting states, an NFA
constructed using this method will have only one: the one added at the
end of the construction.

An NFA constructed this way for the regular expression (a|b)*ac is
shown in figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression
by expanding out all shorthand, e.g. converting st to ss*, [0-9] to
O[1]2]---|9 and s7? to s|e, etc. However, this will result in very large
NFAs for some expressions, so we use a few optimised constructions
for the shorthands. Additionally, we show an alternative construction
for the regular expression €. This construction doesn’t quite follow the

CHAPTER 2. LEXICAL ANALYSIS

Regular expression NFA fragment

st

5|t

Figure 2.4: Constructing NFA fragments from regular expressions

2.5. DETERMINISTIC FINITE AUTOMATA 21

Figure 2.5: NFA for the regular expression (alb)*ac

formula used in figure 2.4, as it doesn’t have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment
for € just connects the half-transitions of the NFA fragments that it is
combined with. In the construction for [0-9], the vertical ellipsis is meant
to indicate that there is a transition for each of the digits in [0-9]. This
construction generalises in the obvious way to other sets of characters,
e.g., [a-zA-20-9]. We have not shown a special construction for s? as
sle will do fine if we use the optimised construction for e.

The optimised constructions are shown in figure 2.6. As an example,
an NFA for [0-9]" is shown in figure 2.7. Note that while this is opti-
mised, it is not optimal. You can make an NFA for this language using
only two states.

2.5 Deterministic finite automata

Nondeterministic automata are, as mentioned earlier, not quite as close
to “the machine” as we would like. Hence, we now introduce a more
restricted form of finite automaton: The deterministic finite automaton,
or DFA for short. DFAs are NFAs, but obey a number of additional
restrictions:

e There are no epsilon-transitions.

e There may not be two identically labelled transitions out of the
same state.

22

CHAPTER 2. LEXICAL ANALYSIS

Regular expression

NFA fragment

0
2ofjos
N
[0-9] 9
+

Figure 2.6: Optimised NFA construction for regular expression short-

hands

Figure 2.7: Optimised NFA for [0-9]"

2.6. CONVERTING AN NFA TO A DFA 23

This means that we never have a choice of several next-states: The state
and the next input symbol uniquely determines the transition (or lack
of same). This is why these automata are called deterministic.

The transition relation is now a (partial) function, and we often write
it as such: move(s, c) is the state (if any) that is reached from state s by
a transition on the symbol c. If there is no such transition, move(s, c)
is undefined.

It is very easy to implement a DFA: A two-dimensional table can
be cross-indexed by state and symbol to yield the next state (or an
indication that there is no transition), essentially implementing the move
function by table lookup. Another (one-dimensional) table can indicate
which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special
case of NFA and any NFA can (as we shall shortly see) be converted to
an equivalent DFA. However, this comes at a cost: The resulting DFA
can be exponentially larger than the NFA (see section 2.10). In practice
(i.e., when describing tokens for a programming language) the increase
in size is usually modest, which is why most lexical analysers are based
on DFAs.

2.6 Converting an NFA to a DFA

As promised, we will show how NFAs can be converted to DFAs such
that we, by combining this with the conversion of regular expressions
to NFAs shown in section 2.4, can convert any regular expression to a
DFA.

The conversion is done by simulating all possible paths in an NFA
at once. This means that we operate with sets of NFA states: When we
have several choices of a next state, we take all of the choices simultane-
ously and form a set of the possible next-states. The idea is that such a
set of NFA states will become a single DFA state. For any given symbol
we form the set of all possible next-states in the NFA, so we get a single
transition (labelled by that symbol) going from one set of NFA states
to another set. Hence, the transition becomes deterministic in the DFA
that is formed from the sets of NFA states.

Epsilon-transitions complicate the construction a bit: Whenever we
are in an NFA state we can always choose to follow an epsilon-transition
without reading any symbol. Hence, given a symbol, a next-state can
be found by either following a transition with that symbol or by first
doing any number of epsilon-transitions and then a transition with the

24 CHAPTER 2. LEXICAL ANALYSIS

symbol. We handle this in the construction by first closing the set of
NFA states under epsilon-transitions and then following transitions with
input symbols. We define the epsilon-closure of a set of states as the set
extended with all states that can be reached from these using any number
of epsilon-transitions. More formally:

Definition 2.2 Given a set M of NFA states, we define e-closure(M) to
be the least (in terms of the subset relation) solution to the set equation

e-closure(M)
=M U{t|s € e-closure(M) and st € T}

Where T is the set of transitions in the NFA.

We will later on see several examples of set equations like the one
above, so we use some time to discuss how such equations can be solved.

2.6.1 Solving set equations

In general, a set equation over a single set-valued variable X has the
form

X = F(X)

where F' is a function from sets to sets. Not all such equations are
solvable, so we will restrict ourselves to special cases, which we will
describe below. We will use calculation of epsilon-closure as the driving
example.

In definition 2.2, e-closure(M) is the value we have to find, so we
replace this by X and get the equation:

X=MuU{t|se X and st €T}
and hence
F(X)=MU{t|se€ X and st €T}

This function has a property that is essential to our solution method:
If X CY then F(X) C F(Y). We say that F' is monotonic. Note
that F'(X) is not e-closure(X) and that F' depends on M, so a new F' is
required for each M that we want to find the epsilon-closure of.

There may be several solutions to this equation. For example, if the
NFA has a pair of states that connect to each other by epsilon transitions,

2.6. CONVERTING AN NFA TO A DFA 25

adding this pair to a solution that does not already include the pair will
create a new solution. The epsilon-closure of M is the least solution to
the equation (i.e., the smallest set that satistifes the equation).

When we have an equation of the form X = F(X) and F is mono-
tonic, we can find the least solution to the equation in the following way:
We first guess that the solution is the empty set and check to see if we
are right: We compare () with F'(()). If these are equal, we are done and
() is the solution. If not, we use the following properties:

e The least solution S to the equation satisfies S = F'(S).
e () C S implies that F(0) C F(S).

to conclude that F(0) C S. Hence, F(0) is a new guess at S. We now
form the chain

DS FWCFF®W®)C...

If at any point an element in the sequence is identical to the previous,
we have a fixed-point, i.e., a set S such that S = F(S). This fixed-point
of the sequence will be the least (in terms of set inclusion) solution to
the equation. This isn’t difficult to verify, but we will omit the details.
Since we are iterating a function until we reach a fixed-point, we call
this process fized-point iteration.

If we are working with sets over a finite domain (e.g., sets of NFA
states), we will eventually reach a fixed-point, as there can be no infinite
chain of strictly increasing sets.

We can use this method for calculating the epsilon-closure of the set
{1} with respect to the NFA shown in figure 2.5. We use a version of F’
where M = {1}, so we start by calculating

F®) = {1}U{t|se0andsteT}
= {1
As 0 # {1}, we continue.

F{1}) = {1}U{t|se{l} and st € T}
= {1}u{2,5} = {1,2,5}
F({1,2,5}) = {1}u{t|se{1,2,5} and st € T}

= {1}uU{2,5,6,7} = {1,2,5,6,7}

F({1,2,5,6,7}) = {1}U{t|se {1,2,56,7} and st € T}
= {1}U{2,5,6,7} = {1,2,5,6,7}

26 CHAPTER 2. LEXICAL ANALYSIS

We have now reached a fixed-point and found our solution. Hence, we
conclude that e-closure({1}) = {1,2,5,6,7}.

We have done a good deal of repeated calculation in the iteration
above: We have calculated the epsilon-transitions from state 1 three
times and those from state 2 and 5 twice each. We can make an opti-
mised fixed-point iteration by exploiting that the function is not only
monotonic, but also distributive: F(XUY) = F(X)UF(Y). This means
that, when we during the iteration add elements to our set, we in the
next iteration need only calculate F' for the new elements and add the
result to the set. In the example above, we get

F(0) = {1}u{t|seand steT}
= {1}
F({1}) = {1}U{t|se{l} and st €T}

= {1} uU{2,5} = {1,2,5}

F({1,2,5}) = F({1})UF({2,5})
= {1,2,5} U({1}U{t| s e {2,5} and st € T})
= {125, u({1tu{6,7}) = {1,2,5,6,7}

F({1,2,5,6,7}) = F({1,2,5}) UF({6,7})
= {1,2,5,6,7} U ({1} U{t| s € {6,7} and st € T})
= {1,2,5,6,7} U ({1}uf) = {1,2,5,6,7}

We can use this principle to formulate a work-list algorithm for finding
the least fixed-points for distributive functions. The idea is that we step-
by-step build a set that eventually becomes our solution. In the first
step we calculate F(0)). The elements in this initial set are unmarked.
In each subsequent step, we take an unmarked element x from the set,
mark it and add F({z}) (unmarked) to the set. Note that if an element
already occurs in the set (marked or not), it is not added again. When,
eventually, all elements in the set are marked, we are done.

This is perhaps best illustrated by an example (the same as before).
We start by calculating F'(()) = {1}. The element 1 is unmarked, so we
pick this, mark it and calculate F'({1}) and add the new elements 2 and
5 to the set. As we continue, we get this sequence of sets:

2.6. CONVERTING AN NFA TO A DFA 27

{1}

4
{1,2,5}
v Vv
{1, 2,5}
4
5,6,7}
v Vv
5,6,7}
v vV Vv
5,6,7}

9)

)

LR
DO < D < DD<

—_, e e

)))

We will later also need to solve simultaneous equations over sets, i.e.,
several equations over several sets. These can also be solved by fixed-
point iteration in the same way as single equations, though the work-list
version of the algorithm becomes a bit more complicated.

2.6.2 The subset construction

After this brief detour into the realm of set equations, we are now ready
to continue with our construction of DFAs from NFAs. The construction
is called the subset construction, as each state in the DFA is a subset of
the states from the NFA.

Algorithm 2.3 (The subset construction) Given an NFA N with
states S, starting state so € S, accepting states F' C S, transitions
T and alphabet X, we construct an equivalent DFA D with states S’,
starting state sy, accepting states F' and a transition function move by:

50 = eclosure({sp})

move(s',c) = eclosure({t | s € s’ and st € T})
S’ = {sp} U{move(s',c)| s €8, ceX}
F/ — {S/GS/|SIQF§£®}

The DFA uses the same alphabet as the NFA.
A little explanation:

e The starting state of the DFA is the epsilon-closure of the set
containing just the starting state of the NFA, i.e., the states that
are reachable from the starting state by epsilon-transitions.

28 CHAPTER 2. LEXICAL ANALYSIS

e A transition in the DFA is done by finding the set of NFA states
that comprise the DFA state, following all transitions (on the same
symbol) in the NFA from all these NFA states and finally com-
bining the resulting sets of states and closing this under epsilon
transitions.

e The set S of states in the DFA is the set of DFA states that can
be reached from s, using the move function. S’ is defined as a set
equation which can be solved as described in section 2.6.1.

e A state in the DFA is an accepting state if at least one of the NFA
states it contains is accepting.

As an example, we will convert the NFA in figure 2.5 to a DFA.

The initial state in the DFA is e-closure({1}), which we have already
calculated to be s; = {1,2,5,6,7}. This is now entered into the set
S’ of DFA states as unmarked (following the work-list algorithm from
section 2.6.1).

We now pick an unmarked element from the uncompleted S’. We
have only one choice: s;. We now mark this and calculate the transitions
for it. We get

move(sy,a) = e-closure({t | s € {1,2,5,6,7} and st € T'})
= e-closure({3,8})
= {3,8,1,2,5,6,7}
= S/
1
move(sl,b) = e-closure({t | s € {1,2,5,6,7} and sPt € T})
= e-closure({8})
= {8,1,2,5,6,7}
= 5,
2
move(sh,c) = e-closure({t | s € {1,2,5,6,7} and st € T'})

e-closure({})
= {}

Note that the empy set of NFA states is not an DFA state, so there will

be no transition from s on c.
v
We now add s and s, to our incomplete S, which now is {s{, s}, sh}.
We now pick s}, mark it and calculate its transitions:

2.6. CONVERTING AN NFA TO A DFA 29

We have seen s}

move(s],a)

move(s],b)

move(s], c)

next pick sh:

move(sh, a)

move(sh, b)

move(sh, ¢)

e-closure({t | s € {3,8,1,2,5,6,7} and s%t € T'})
e-closure({3,8})
{3,8,1,2,5,6,7}

s

e-closure({t | s € {3,8,1,2,5,6,7} and sPt e T})
e-closure({8})

{8,1,2,5,6,7}

S/

2

e-closure({t | s € {3,8,1,2,5,6,7} and st € T'})
e-closure({4})
{4}

53

v Vv

and sh, before, so only s4 is added: {s(, s}, 5, sh}. We

e-closure({t | s € {8,1,2,5,6,7} and st € T'})
e-closure({3,8})
{3,8,1,2,5,6,7}
8/
1

e-closure({t | s € {8,1,2,5,6,7} and sPt € T})
e-closure({8})

{8,1,2,5,6,7}

S/

2

e-closure({t | s € {8,1,2,5,6,7} and st € T'})
e-closure({})
{}

No new elements are added, so we pick the remaining unmarked element

sh:

30 CHAPTER 2. LEXICAL ANALYSIS

Figure 2.8: DFA constructed from the NFA in figure 2.5

move(sy,a) = e-closure({t | s € {4} and st € T})
= e-closure({})
= {}

move(sy,b) = e-closure({t | s € {4} and sPt € T})
= ?}closure({})

move(sy,c) = e-closure({t | s € {4} and st € T'})
= e-closure({})
= {}

Which now completes the construction of S" = {s{, s, s5, s5}. Only sj
contains the accepting NFA state 4, so this is the only accepting state
of our DFA. Figure 2.8 shows the completed DFA.

2.7 Size versus speed

In the above example, we get a DFA with 4 states from an NFA with 8
states. However, as the states in the constructed DFA are (nonempty)
sets of states from the NFA there may potentially be 2™ — 1 states in a
DFA constructed from an n-state NFA. It is not too difficult to construct

2.8. MINIMISATION OF DFAS 31

classes of NFAs that expand exponentially in this way when converted
to DFAs, as we shall see in section 2.10.1. Since we are mainly interested
in NFAs that are constructed from regular expressions as in section 2.4,
we might ask ourselves if these might not be in a suitably simple class
that do not risk exponential-sized DFAs. Alas, this is not the case. Just
as we can construct a class of NFAs that expand exponentially, we can
construct a class of regular expressions where the smallest equivalent
DFAs are exponentially larger. This happens rarely when we use regu-
lar expressions or NFAs to describe tokens in programming languages,
though.

It is possible to avoid the blow-up in size by operating directly on
regular expressions or NFAs when testing strings for inclusion in the
languages these define. However, there is a speed penalty for doing so.
A DFA can be run in time k * |v|, where |v| is the length of the input
string v and k is a small constant that is independent of the size of
the DFA!. Regular expressions and NFAs can be run in time close to
¢ * |N| * |v|, where |N| is the size of the NFA (or regular expression)
and the constant c typically is larger than k. All in all, DFAs are a lot
faster to use than NFAs or regular expressions, so it is only when the
size of the DFA is a real problem that one should consider using NFAs
or regular expressions directly.

2.8 Minimisation of DFAs

Even though the DFA in figure 2.8 has only four states, it is not mini-
mal. It is easy to see that states s, and s are equivalent: Neither are
accepting and they have identical transitions. We can hence collapse
these states into a single state and get a three-state DFA.

DFAs constructed from regular expressions through NFAs are often
non-minimal, though they are rarely very far from being minimal. Nev-
ertheless, minimising a DFA is not terribly difficult and can be done
fairly fast, so many lexer generators perform minimisation.

An interesting property of DFAs is that any regular language (a
language that can be expressed by a regular expression, NFA or DFA)
has a unique minimal DFA. Hence, we can decide equivalence of regular
expressions (or NFAs or DFAs) by converting both to minimal DFAs
and compare the results.

As hinted above, minimisation of DFAs is done by collapsing equiv-
alent states. However, deciding whether two states are equivalent is not

'If we don’t consider the effects of cache-misses etc.

32 CHAPTER 2. LEXICAL ANALYSIS

just done by testing if their immediate transitions are identical, since
transitions to different states may be equivalent if the target states turn
out to be equivalent. Hence, we use a strategy where we first assume
all states to be equivalent and then separate them only if we can prove
them different. We use the following rules for this:

e An accepting state is not equivalent to a non-accepting state.

e If two states s; and so have transitions on the same symbol ¢ to
states t; and 9 that we have already proven to be different, then
s1 and so are different. This also applies if only one of s1 or so
have a defined transition on c.

This leads to the following algorithm.

Algorithm 2.4 (DFA minimisation) Given a DFA D over the al-
phabet ¥ with states S where ' C S is the set of the accepting states,
we construct a minimal DFA D' where each stale is a group of states
from D. The groups in the minimal DFA are consistent: For any pair
of states s1, s9 in the same group G and any symbol c, move(sy,c) is in
the same group G' as move(sa,c) or both are undefined.

1) We start with two groups: F and S\ F. These are unmarked.

2) We pick any unmarked group G and check if it is consistent. If
it 1s, we mark it. If G is not consistent, we split it into mazimal
consistent subgroups and replace G by these. All groups are then
unmarked.

3) If there are no unmarked groups left, we are done and the remaining
groups are the states of the minimal DFA. Otherwise, we go back
to step 2.

The starting state of the minimal DFA is the group that contains the
original starting state and any group of accepting states is an accepting
state in the minimal DFA.

The time needed for minimisation using algorithm 2.4 depends on the
strategy used for picking groups in step 2. With random choices, the
worst case is quadratic in the size of the DFA, but there exist strate-
gies for choosing groups and data structures for representing these that
guarantee a worst-case time that is O(nx*log(n)), where n is the number
of states in the (non-minimal) DFA. In other words, the method can be

2.8. MINIMISATION OF DFAS 33

Figure 2.9: Non-minimal DFA

implemented so it uses little more than linear time to do minimisation.
We will not here go into further detail but just refer to 3] for the optimal
algorithm.

We will, however, note that we can make a slight optimisation to
algorithm 2.4: A group that consists of a single state need never be
split, so we need never select such in step 2, and we can stop when all
unmarked groups are singletons.

2.8.1 Example

As an example of minimisation, take the DFA in figure 2.9.
We now make the initial division into two groups: The accepting and
the non-accepting states.

G = {0,6}
G, = {1,2,3,4,5,7}

These are both unmarked. We next pick any unmarked group, say Gj.
To check if this is consistent, we make a table of its transitions:

G1 a b
0 |Ga —
6 |Gy —

This is consistent, so we just mark it and select the remaining unmarked
group G9 and make a table for this

34 CHAPTER 2. LEXICAL ANALYSIS

Gy | a b
1 |Gy Go
2 | Gy Go
3| — Go
4 |Gy Go
5 | Gy Go
7T 1G1 Go

G is evidently not consistent, so we split it into maximal consistent
subgroups and erase all marks (including the one on Gi):

G = {0.6)
Gy = {1,2,5)
Gy = {3}

Gs = {4,7}

We now pick G3 for consideration:

G3 a b
1 |Gs Gs
2 |Gy Gs
5 |Gs Gs

This isn’t consistent either, so we split again and get

G = {0,6}
Gy = {3}
G5 = {4a 7}
Ge¢ = {1,5}
Gr = {2}

We now pick G5 and check this:

Gs| a b
4 | G1 Gg
7T 1G1 Gg

This is consistent, so we mark it and pick another group, say, Gg:

G6 a b
1 1Gs Gr
5 | Gs Gy

2.8. MINIMISATION OF DFAS 35

Figure 2.10: Minimal DFA

This, also, is consistent, so we have only one unmarked non-singleton
group left: G.

Gi|l a b
0 |Gg —
6 |Gg —

As we mark this, we see that there are no unmarked groups left (except
the singletons). Hence, the groups form a minimal DFA equivalent to
the one in figure 2.9. The minimised DFA is shown in figure 2.10.

2.8.2 Dead states

Algorithm 2.4 works under some, as yet, unstated assumptions:

e The move function is total, ¢.e., there are transitions on all symbols
from all states, or

e There are no dead states in the DFA.

A dead state is a state from which no accepting state can be reached.
Such do not occur in DFAs constructed from NFAs without dead states,
and NFAs with dead states can not be constructed from regular ex-
pressions by the method shown in section 2.4. Hence, as long as we
use minimisation only on DFAs constructed by this process, we are safe.

36 CHAPTER 2. LEXICAL ANALYSIS

However, if we get a DFA of unknown origin, we risk that it may contain
both dead states and undefined transitions.

A transition to a dead state should rightly be equivalent to an un-
defined transition, as neither can yield future acceptance. The only
difference is that we discover this earlier on an undefined transition than
when we make a transition to a dead state. However, algorithm 2.4 will
treat these differently and may hence decree a group to be inconsistent
even though it is not. This will make the algorithm split a group that
doesn’t need to be split, hence producing a non-minimal DFA. Consider,
for example, the following DFA:

a
0B OO0
a

States 1 and 2 are, in fact, equivalent, as starting from either one, any
sequence of a’s (and no other sequences) will lead to an accepting state.
A minimal equivalent DFA has only one accepting state with a transition
to itself on a.

But algorithm 2.4 will see a transition on b out of state 2 but no
transition on b out of state 1, so it will not keep states 1 and 2 in the
same group. As a result, no reduction in the DFA is made.

There are two solutions to this problem:

1) Make sure there are no dead states. This can be ensured by invari-
ant, as is the case for DFAs constructed by the methods shown in
this chapter, or by explicitly removing dead states before minimi-
sation. Dead states can be found by a simple reachability analysis
for directed graphs. In the above example, state 3 is dead and can
be removed (including the transition to it). This makes states 1
and 2 stay in the same group.

2) Make sure there are no undefined transitions. This can be achieved
by adding a new dead state (which has transitions to itself on all
symbols) and replacing all undefined transitions by transitions to
this dead state. After minimisation, the group that contains the
dead state will contain all dead states from the original DFA. This
group can now be removed from the minimal DFA (which will once
more have undefined transitions). In the above example, a new
(non-accepting) state 4 has to be added. State 1 has a transition
to state 4 on b and state 3 has a transition to state 4 on a. State

2.9. LEXERS AND LEXER GENERATORS 37

4 has transitions to itself on both a and b. After minimisation,
state 1 and 2 will be joined, as will state 3 and 4. Since state 4 is
dead, all states joined with it are also dead, so we can remove the
combined state 3 and 4 from the resulting minimized automata.

2.9 Lexers and lexer generators

We have, in the previous sections, seen how we can convert a language
description written as a regular expression into an efficiently executable
representation (a DFA). This is the heart of a lexer generator, but not
the full story. There are several additional issues, which we address
below:

o A lexer has to distinguish between several different types of tokens,
e.g., numbers, variables and keywords. Each of these are described
by its own regular expression.

e A lexer does not check if its entire input is included in the lan-
guages defined by the regular expressions. Instead, it has to cut
the input into pieces (tokens), each of which is included in one of
the languages.

o If there are several ways to split the input into legal tokens, the
lexer has to decide which of these it should use.

We do not wish to scan the input repeatedly, once for every type of
token, as this can be quite slow. Hence, we wish to generate a DFA
that tests for all the token types simultaneously. This isn’t too difficult:
If the tokens are defined by regular expressions 71, 19,...,r,, then the
regular expression 71 | 72 | ... | 7, describes the union of the languages
and the DFA constructed from it will scan for all token types at the
same time.

However, we also wish to distinguish between different token types,
so we must be able to know which of the many tokens was recognised by
the DFA. The easiest way to do this is:

1) Construct NFAs Ny, N, ..., N, for each of ry,19,..., 7.

2) Mark the accepting states of the NFAs by the name of the tokens
they accept.

38 CHAPTER 2. LEXICAL ANALYSIS

3) Combine the NFAs to a single NFA by adding a new starting state
which has epsilon-transitions to each of the starting states of the
NFAs.

4 Convert the combined NFA to a DFA.

5) Each accepting state of the DFA consists of a set of NFA states,
some of which are accepting states which we marked by token type
in step 2. These marks are used to mark the accepting states of
the DFA so each of these will indicate the token types it accepts.

If the same accepting state in the DFA can accept several different token
types, it is because these overlap. This is not unusual, as keywords
usually overlap with variable names and a description of floating point
constants may include integer constants as well. In such cases, we can
do one of two things:

e Let the lexer generator generate an error and require the user to
make sure the tokens are disjoint.

e Let the user of the lexer generator choose which of the tokens is
preferred.

It can be quite difficult (though always possible) with regular expres-
sions to define, e.g., the set of names that are not keywords. Hence, it
is common to let the lexer choose according to a prioritised list. Nor-
mally, the order in which tokens are defined in the input to the lexer
generator indicates priority (earlier defined tokens take precedence over
later defined tokens). Hence, keywords are usually defined before vari-
able names, which means that, for example, the string “if” is recognised
as a keyword and not a variable name. When an accepting state in a
DFA contains accepting NFA states with different marks, the mark cor-
responding to the highest priority (earliest defined) token is used. Hence,
we can simply erase all but one mark from each accepting state. This is
a very simple and effective solution to the problem:.

When we described minimisation of DFAs, we used two initial groups:
One for the accepting states and one for the non-accepting states. As
there are now several kinds of accepting states (one for each token), we
must use one group for each token, so we will have a total of n+ 1 initial
groups when we have n different tokens.

To illustrate the precedence rule, figure 2.11 shows an NFA made
by combining NFAs for variable names, the keyword if, integers and

2.9. LEXERS AND LEXER GENERATORS 39

Figure 2.11: Combined NFA for several tokens

floats, as described by the regular expressions in section 2.2.2. The indi-
vidual NFAs are (simplified versions of) what you get from the method
described in section 2.4. When a transition is labelled by a set of char-
acters, it is a shorthand for a set of transitions each labelled by a sin-
gle character. The accepting states are labelled with token names as
described above. The corresponding minimised DFA is shown in fig-
ure 2.12. Note that state G is a combination of states 9 and 12 from
the NFA, so it can accept both NUM and FLOAT, but since integers take
priority over floats, we have marked G with NUM only.

Splitting the input stream

As mentioned, the lexer must cut the input into tokens. This may be
done in several ways. For example, the string i£f17 can be split in many
different ways:

40 CHAPTER 2. LEXICAL ANALYSIS

[a-zA-Z 0-9]

[a-zA-Z 0-9]
~(@§

ID
[a—hj—zA—Z]

[a-eg-zA-Z_0-9]

&) E

K/

[0-9] [0-9]

/0-9] [0-9]
NUM \;§i:>
FLOAT
[eE [eE]
[O 9]

y w] [0-9]
[0-9] ‘<:f;::>

FLOAT

Figure 2.12: Combined DFA for several tokens

2.9. LEXERS AND LEXER GENERATORS 41

As one token, which is the variable name if17.

As the variable name if1 followed by the number 7.

As the keyword if followed by the number 17.

As the keyword if followed by the numbers 1 and 7.
e As the variable name i followed by the variable name £17.

e And several more.

A common convention is that it is the longest prefix of the input that
matches any token which will be chosen. Hence, the first of the above
possible splittings of i£17 will be chosen. Note that the principle of the
longest match takes precedence over the order of definition of tokens,
so even though the string starts with the keyword if, which has higher
priority than variable names, the variable name is chosen because it is
longer.

Modern languages like C, Java or SML follow this convention, and
so do most lexer generators, but some (mostly older) languages like
FORTRAN do not. When other conventions are used, lexers must either
be written by hand to handle these conventions or the conventions used
by the lexer generator must be side-stepped. Some lexer generators allow
the user to have some control over the conventions used.

The principle of the longest matching prefix is handled by letting the
DFA read as far as it can, until it either reaches the end of the input
or no transition is defined on the next input symbol. If the current
state at this point is accepting, we are in luck and can simply output
the corresponding token. If not, we must go back to the last time we
were in an accepting state and output the token indicated by this. The
characters read since then are put back in the input stream. The lexer
must hence retain the symbols it has read since the last accepting state
S0 it can re-insert these in the input in such situations. If we are not at
the end of the input stream, we restart the DFA (in it sinitial state) on
the remaining input to find the next tokens.

As an example, consider lexing of the string 3e-y with the DFA in
figure 2.12. We get to the accepting state G after reading the digit 3.
However, we can continue making legal transitions to state I on e and
then to state J on - (as these could be the start of the exponent part
of a real number). It is only when we, in state J, find that there is no
transition on y that we realise that this isn’t the case. We must now
go back to the last accepting state (G) and output the number 3 as the

42 CHAPTER 2. LEXICAL ANALYSIS

first token and re-insert - and e in the input stream, so we can continue
with e-y when we look for the subsequent tokens.

Lexical errors

If no prefix of the input string forms a valid token, a lexical error has
occurred. When this happens, the lexer will usually report an error. At
this point, it may stop reading the input or it may attempt continued
lexical analysis by skipping characters until a valid prefix is found. The
purpose of the latter approach is to try finding further lexical errors in
the same input, so several of these can be corrected by the user before
re-running the lexer. Some of these subsequent errors may, however,
not be real errors but may be caused by the lexer not skipping enough
characters (or skipping too many) after the first error is found. If, for
example, the start of a comment is ill-formed, the lexer may try to
interpret the contents of the comment as individual tokens, and if the
end of a comment is ill-formed, the lexer will read until the end of the
next comment (if any) before continuig, hence skipping too much text.

When the lexer finds an error, the consumer of the tokens that the
lexer produces (e.g., the rest of the compiler) can not usually itself pro-
duce a valid result. However, the compiler may try to find other errors in
the remaining input, again allowing the user to find several errors in one
edit-compile cycle. Again, some of the subsequent errors may really be
spurious errors caused by lexical error(s), so the user will have to guess
at the validity of every error message except the first, as only the first
error message is guaranteed to be a real error. Nevertheless, such error
recovery has, when the input is so large that restarting the lexer from
the start of input incurs a considerable time overhead, proven to be an
aid in productivity by locating more errors in less time. Less commonly,
the lexer may work interactively with a text editor and restart from the
point at which an error was spotted after the user has tried to fix the
error.

2.9.1 Lexer generators

A lexer generator will typically use a notation for regular expressions
similar to the one described in section 2.1, but may require alphabet-
characters to be quoted to distinguish them from the symbols used to
build regular expressions. For example, an * intended to match a multi-
plication symbol in the input is distinguished from an * used to denote
repetition by quoting the * symbol, e.g. as ‘*¢. Additionally, some lexer

2.9. LEXERS AND LEXER GENERATORS 43

generators extend regular expressions in various ways, e.g., allowing a
set of characters to be specified by listing the characters that are not
in the set. This is useful, for example, to specify the symbols inside a
comment up to the terminating character(s).

The input to the lexer generator will normally contain a list of regular
expressions that each denote a token. Each of these regular expressions
has an associated action. The action describes what is passed on to
the consumer (e.g., the parser), typically an element from a token data
type, which describes the type of token (NUM, ID, efc.) and sometimes
additional information such as the value of a number token, the name
of an identifier token and, perhaps, the position of the token in the
input file. The information needed to construct such values is typically
provided by the lexer generator through library functions or variables
that can be used in the actions.

Normally, the lexer generator requires white-space and comments to
be defined by regular expressions. The actions for these regular expres-
sions are typically empty, meaning that white-space and comments are
just ignored.

An action can be more than just returning a token. If, for example,
a language has a large number of keywords, then a DFA that recognises
all of these individually can be fairly large. In such cases, the keywords
are not described as separate regular expressions in the lexer definition
but instead treated as special cases of the identifier token. The action
for identifiers will then look the name up in a table of keywords and
return the appropriate token type (or an identifier token if the name is
not a keyword). A similar strategy can be used if the language allows
identifiers to shadow keywords.

Another use of non-trivial lexer actions is for nested comments. In
principle, a regular expression (or finite automaton) cannot recognise
arbitrarily nested comments (see section 2.10), but by using a global
counter, the actions for comment tokens can keep track of the nesting
level. If escape sequences (for defining, e.g., control characters) are
allowed in string constants, the actions for string tokens will, typically,
translate the string containing these sequences into a string where they
have been substituted by the characters they represent.

Sometimes lexer generators allow several different starting points.
In the example in figures 2.11 and 2.12, all regular expressions share
the same starting state. However, a single lexer may be used, e.g., for
both tokens in the programming language and for tokens in the input
to that language. Often, there will be a good deal of sharing between
these token sets (the tokens allowed in the input may, for example, be

44 CHAPTER 2. LEXICAL ANALYSIS

a subset of the tokens allowed in programs). Hence, it is useful to allow
these to share a NFA, as this will save space. The resulting DFA will
have several starting states. An accepting state may now have more than
one token name attached, as long as these come from different token sets
(corresponding to different starting points).

In addition to using this feature for several sources of text (program
and input), it can be used locally within a single text to read very
complex tokens. For example, nested comments and complex-format
strings (with nontrivial escape sequences) can be easier to handle if this
feature is used.

2.10 Properties of regular languages

We have talked about regular languages as the class of languages that
can be described by regular expressions or finite automata, but this in
itself may not give a clear understanding of what is possible and what is
not possible to describe by a regular language. Hence, we will now state
a few properties of regular languages and give some examples of some
regular and non-regular languages and give informal rules of thumb that
can (sometimes) be used to decide if a language is regular.

2.10.1 Relative expressive power

First, we repeat that regular expressions, NFAs and DFAs have exactly
the same expressive power: They all can describe all regular languages
and only these. Some languages may, however, have much shorter de-
scriptions in one of these forms than in others.

We have already argued that we from a regular expression can con-
struct an NFA whose size is linear in the size of the regular expression,
and that converting an NFA to a DFA can potentially give an exponential
increase in size (see below for a concrete example of this). Since DFAs
are also NFAs, NFAs are clearly at least as compact as (and sometimes
much more compact than) DFAs. Similarly, we can see that NFAs are at
least as compact (up to a small constant factor) as regular expressions.
But we have not yet considered if the converse is true: Can an NFA be
converted to a regular expression of proportional size. The answer is,
unfortunately, no: There exist classes of NFAs (and even DFAs) that
need regular expressions that are exponentially larger to describe them.
This is, however, mainly of academic interest as we rarely have to make
conversions in this direction.

2.10. PROPERTIES OF REGULAR LANGUAGES 45

If we are only interested in if a language is regular rather than the size
of its description, however, it doesn’t matter which of the formalisms we
choose, so we can in each case choose the formalism that suits us best.
Sometimes it is easier to describe a regular language using a DFA or
NFA instead of a regular expression. For example, the set of binary
number strings that represent numbers that divide evenly by 5 can be
described by a 6-state DFA (see exercise 2.9), but it requires a very
complex regular expression to do so. For programming language tokens,
regular expression are typically quite suitable.

The subset construction (algorithm 2.3) maps sets of NFA states to
DFA states. Since there are 2" — 1 non-empty sets of n NFA states,
the resulting DFA can potentially have exponentially more states than
the NFA. But can this potential ever be realised? To answer this, it
isn’t enough to find one n-state NFA that yields a DFA with 2" — 1
states. We need to find a family of ever bigger NFAs, all of which yield
exponentially-sized DFAs. We also need to argue that the resulting DFAs
are minimal. One construction that has these properties is the following:
For each integer n > 1, construct an n-state NFA in the following way:

1. State 0 is the starting state and state n — 1 is accepting.

2. If 0 < i < n — 1, state 7 has a transition to state ¢ + 1 on the
symbol a.

3. All states have transitions to themselves and to state 0 on the
symbol b.

We can represent a set of these states by an n-bit number: Bit ¢ is 1 in
the number if and only if state 7 is in the set. The set that contains only
the initial NFA state is, hence, represented by the number 1. We shall
see that the way a transition maps a set of states to a new set of states
can be expressed as an operation on the number:

e A transition on a maps the number x to (2z mod (2")).

e A transition on b maps the number x to (x or 1), using bit-wise
or.

This isn’t hard to verify, so we leave this to the interested reader. It is
also easy to see that these two operations can generate any n-bit number
from the number 1. Hence, any subset can be reached by a sequence of
transitions, which means that the subset-construction will generate a
DFA state for every subset.

46 CHAPTER 2. LEXICAL ANALYSIS

But is the DFA minimal? If we look at the NFA, we can see that
an a leads from state i to i + 1 (if ¢ < n — 1), so for each NFA state 7
there is exactly one sequence of as that leads to the accepting state, and
that sequence has n—1—1 as. Hence, a DFA state whose subset contains
the NFA state ¢ will lead to acceptance on a string of n—1—i as, while
a DFA state whose subset does not contain ¢ will not. Hence, for any
two different DFA states, we can find an NFA state ¢ that is in one of
the sets but not the other and use that to construct a string that will
distinguish the DFA states. Hence, all the DFA states are distinct, so
the DFA is minimal.

2.10.2 Limits to expressive power

The most basic property of a DFA is that it is finite: It has a finite
number of states and nowhere else to store information. This means, for
example, that any language that requires unbounded counting cannot
be regular. An example of this is the language {a"b" | n > 0}, that is,
any sequence of as followed by a sequence of the same number of bs. If
we must decide membership in this language by a DFA that reads the
input from left to right, we must, at the time we have read all the as,
know how many there were, so we can compare this to the number of bs.
But since a finite automaton cannot count arbitrarily high, the language
isn’t regular. A similar non-regular language is the language of matching
parentheses. However, if we limit the nesting depth of parentheses to a
constant n, we can recognise this language by a DFA that has n+1 states
(0 to n), where state ¢ corresponds to ¢ unmatched opening parentheses.
State 0 is both the starting state and the only accepting state.

Some surprisingly complex languages are regular. As all finite sets
of strings are regular languages, the set of all legal Pascal programs of
less than a million pages is a regular language, though it is by no means
a simple one. While it can be argued that it would be an acceptable
limitation for a language to allow only programs of less than a million
pages, it isn’t practical to describe a programming language as a regular
language: The description would be far too large. Even if we ignore such
absurdities, we can sometimes be surprised by the expressive power of
regular languages. As an example, given any integer constant n, the set
of numbers (written in binary or decimal notation) that divide evenly
by n is a regular language (see exercise 2.9).

2.10. PROPERTIES OF REGULAR LANGUAGES 47

2.10.3 Closure properties

We can also look at closure properties of regular languages. It is clear
that regular languages are closed under set union: If we have regular
expressions s and ¢ for two languages, the regular expression s|¢ describes
the union of these languages. Similarly, regular languages are closed
under concatenation and unbounded repetition, as these correspond to
basic operators of regular expressions.

Less obviously, regular languages are also closed under set difference
and set intersection. To see this, we first look at set complement: Given
a fixed alphabet ¥, the complement of the language L is the set of all
strings built from the alphabet X, except the strings found in L. We
write the complement of L as L. To get the complement of a regular
language L, we first construct a DFA for the language L and make sure
that all states have transitions on all characters from the alphabet (as
described in section 2.8.2). Now, we simply change every accepting state
to non-accepting and vice versa, and thus get a DFA for L.

We can now (by using the set-theoretic equivalent of De Morgan’s
law) construct Ly N Ly as L1 U Ly. Given this intersection construction,
we can now get set difference by L1 \ Ly = L1 N Lo.

Regular sets are also closed under a number of common string op-
erations, such as prefix, suffix, subsequence and reversal. The precise
meaning of these words in the present context is defined below.

Prefix. A prefix of a string w is any initial part of w, including the
empty string and all of w. The prefixes of abc are hence €, a, ab
and abec.

Suffiz. A suffix of a string is what remains of the string after a prefix
has been taken off. The suffixes of abc are hence abc, bc, ¢ and
€.

Subsequence. A subsequence of a string is obtained by deleting any
number of symbols from anywhere in the string. The subsequences
of abc are hence abc, bc, ac, ab, ¢, b, aand e

Reversal. The reversal of a string is the string read backwards. The
reversal of abc is hence cba.

As with complement, these can be obtained by simple transformations
of the DFAs for the language.

48 CHAPTER 2. LEXICAL ANALYSIS

2.11 Further reading

There are many variants of the method shown in section 2.4. The version
presented here has been devised for use in this book in an attempt to
make the method easy to understand and manageable to do by hand.
Other variants can be found in [5] and [9].

It is possible to convert a regular expression to a DFA directly with-
out going through an NFA. One such method [26] [5] actually at one
stage during the calculation computes information equivalent to an NFA
(without epsilon-transitions), but more direct methods based on alge-
braic properties of regular expressions also exist [12]. These, unlike
NFA-based methods, generalise fairly easily to handle regular expres-
sions extended with explicit set-intersection and set-difference operators.

A good deal of theoretic information about regular expressions and
finite automata can be found in [18|. An efficient DFA minimization
algorithm can be found in [22].

Lexer generators can be found for most programming languages. For
C, the most common are Lex [24] and Flex [34]. The latter generates
the states of the DFA as program code instead of using table-lookup.
This makes the generated lexers fast, but can use much more space than
a table-driven program.

Finite automata and notation reminiscent of regular expressions are
also used to describe behaviour of concurrent systems [28]. In this set-
ting, a state represents the current state of a process and a transition
corresponds to an event to which the process reacts by changing state.

Exercises

Exercise 2.1

In the following, a number-string is a non-empty sequence of decimal
digits, ¢.e., something in the language defined by the regular expres-
sion [0-9]". The value of a number-string is the usual interpretation
of a number-string as an integer number. Note that leading zeroes are
allowed.

Make for each of the following languages a regular expression that
describes that language.

a) All number-strings that have the value 42.

b) All number-strings that do not have the value 42.

2.11. FURTHER READING 49

¢) All number-strings that have a value that is strictly greater than
42.

Exercise 2.2
Given the regular expression a*(alb)aa:
a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.3

Given the regular expression ((a|b) (a|bb))*:

a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.4

Make a DFA equivalent to the following NFA:

€

start e

Minimise the following DFA:

Exercise 2.5

50 CHAPTER 2. LEXICAL ANALYSIS

Exercise 2.6

Minimise the following DFA:

Exercise 2.7
Construct DFAs for each of the following regular languages. In all cases
the alphabet is {a, b}.

a) The set of strings that has exactly 3 bs (and any number of as).

b) The set of strings where the number of bs is a multiple of 3 (and
there can be any number of as).

¢) The set of strings where the difference between the number of as
and the number of bs is a multiple of 3.

Exercise 2.8

Construct a DFA that recognises balanced sequences of parenthesis with
a maximal nesting depth of 3, e.g., €, ()(), (O)(())) or (()())()() but not

((C0)) or (OCOID)))-

Exercise 2.9

Given that binary number strings are read with the most significant
bit first and may have leading zeroes, construct DFAs for each of the
following languages:

a) Binary number strings that represent numbers that are multiples
of 4, e.g., 0, 100 and 10100.

b) Binary number strings that represent numbers that are multiples
of 5, e.g., 0, 101, 10100 and 11001.

Hint: Make a state for each possible remainder after division by 5
and then add a state to avoid accepting the empty string.

2.11. FURTHER READING 51

c) Given a number n, what is the minimal number of states needed
in a DFA that recognises binary numbers that are multiples of n?
Hint: write n as a * 2°, where a is odd.

Exercise 2.10

The empty language, 4.e., the language that contains no strings can be
recognised by a DFA (any DFA with no accepting states will accept this
language), but it can not be defined by any regular expression using
the constructions in section 2.2. Hence, the equivalence between DFAs
and regular expressions is not complete. To remedy this, a new regular
expression ¢ is introduced such that L(¢) = 0.

a) Argue why each of the following algebraic rules, where s is an
arbitrary regular expression, is true:

ols =
bs
5
(b*

I
[S S

b) Extend the construction of NFAs from regular expressions to in-
clude a case for ¢.

¢) What consequence will this extension have for converting the NFA
to a minimal DFA? Hint: dead states.
Exercise 2.11

Show that regular languages are closed under prefix, suffix, subsequence
and reversal, as postulated in section 2.10. Hint: show how an NFA N
for a regular language L can be transformed to an NFA N, for the set
of prefixes of strings from L, and similarly for the other operations.

Exercise 2.12

Which of the following statements are true? Argue each answer infor-
mally.

a) Any subset of a regular language is itself a regular language.

b) Any superset of a regular language is itself a regular language.

52 CHAPTER 2. LEXICAL ANALYSIS

¢) The set of anagrams of strings from a regular language forms a
regular language. (An anagram of a string is obtained by rear-
ranging the order of characters in the string, but without adding
or deleting any. The anagrams of the string abc are hence abc,
acb, bac, bca, cab and cba).

Exercise 2.13

In figures 2.11 and 2.12 we used character sets on transitions as short-
hands for sets of transitions, each with one character. We can, instead,
extend the definition of NFAs and DFAs such that such character sets
are allowed on a single transition.

For a DFA (to be deterministic), we must require that transitions
out of the same state have disjoint character sets.

a) Sketch how algorithm 2.3 must be modified to handle transitions
with sets in such a way that the disjointedness requirement for
DFAs are ensured.

b) Sketch how algorithm 2.4 must be modified to handle character
sets. A new requirement for DFA minimality is that the number
of transitions as well as the number of states is minimal. How can
this be ensured?

Exercise 2.14

As mentioned in section 2.5, DFAs are often implemented by tables
where the current state is cross-indexed by the next symbol to find the
next state. If the alphabet is large, such a table can take up quite a lot
of room. If, for example, 16-bit UNI-code is used as the alphabet, there
are 26 = 65536 entries in each row of the table. Even if each entry in
the table is only one byte, each row will take up 64KB of memory, which
may be a problem.

A possible solution is to split each 16-bit UNI-code character ¢ into
two 8-bit characters c¢; and co. In the regular expressions, each occur-
rence of a character c is hence replaced by the regular expression cjco.
This regular expression is then converted to an NFA and then to a DFA
in the usual way. The DFA may (and probably will) have more states
than the DFA using 16-bit characters, but each state in the new DFA
use only 1/256th of the space used by the original DFA.

a) How much larger is the new NFA compared to the old?

2.11.

b)

FURTHER READING 53

Estimate what the expected size (measured as number of states)
of the new DFA is compared to the old. Hint: Some states in the
NFA can be reached only after an even number of 8-bit characters
are read and the rest only after an odd number of 8-bit characters
are read. What does this imply for the sets constructed during the
subset construction?

Roughly, how much time does the new DFA require to analyse a
string compared to the old?

If space is a problem for a DFA over an 8-bit alphabet, do you
expect that a similar trick (splitting each 8-bit character into two
4-bit characters) will help reduce the space requirements? Justify
your answer.

Exercise 2.15

If L is a regular language, so is L \ {€}, i.e., the set of all nonempty
strings in L.

So we should be able to transform a regular expression for L into
a regular expression for L \ {¢}. We want to do this with a function
nonempty that is recursive over the structure of the regular expression
for L, i.e., of the form:

nonempty(
nonempty(
nonempty(
nonempty(st
nonempty(s?
nonempty(
nonempty(

9 =0

NP
I

where a is an alphabet symbol
slt) = nonempty(s)|nonempty(t)

~—

V)
*
~—

Il

where ¢ is the regular expression for the empty language (see exer-
cise 2.10).

a)

b)

Complete the definition of nonempty by replacing the occurrences
of “...” in the rules above by expressions similar to those shown in
the rules for € and s|t.

Use this definition to find nonempty(a*b*).

54 CHAPTER 2. LEXICAL ANALYSIS

Exercise 2.16

If L is a regular language, so is the set of all prefixes of strings in L (see
section 2.10.3).

So we should be able to transform a regular expression for L into a
regular expression for the set of all prefixes of strings in L. We want to
do this with a function prefizes that is recursive over the structure of the
regular expression for L, i.e., of the form:

prefizes(e) = €

prefizes(a) = a? where a is an alphabet symbol
prefizes(s|t) = prefizes(s) | prefizes(t)

prefizes(st) = ...

prefizes(s*) =

prefizes(sT) =

a) Complete the definition of prefizes by replacing the occurrences of
“...” in the rules above by expressions similar to those shown in
the rules for e and st.

b) Use this definition to find prefizes(ab*c).

Index

abstract syntax, 101, 122
accept, 91, 95, 96
action, 43, 100, 101
activation record, 198
alias, 211, 212
allocation, 155, 216
Alpha, 169, 255
alphabet, 10
ARM, 169
array, 237
assembly, 3
assignment, 139
associative, 67, 68
attribute, 121
inherited, 122
synthesised, 121
available assignments, 223

back-end, 135
biased colouring, 192
binary translation, 255
binding
dynamic, 115
static, 115
bootstrapping, 247, 250
full, 252
half, 252
incremental, 254
Bratman diagram, 248

C, 4,41, 67, 70, 102, 104, 107, 119
141, 147, 149, 152, 156, 210,
212, 217, 236, 244

C++, 245
cache, 237
cache line, 237
call sequence, 239
call stack, 197
call-by-reference, 211
call-by-value, 197
call-sequence, 199
callee-saves, 202, 204
caller-saves, 202, 204
caller/callee, 197
calling convention, 199
CISC, 170
coalescing, 193
code generator, 168, 171
code hoisting, 174, 235
column-major, 156
comments
nested, 43
common subexpression elimination,
174, 223, 228, 236
compile-time, 140
compiling compilers, 250
conflict, 83, 88, 97, 99, 104
reduce-reduce, 97, 99
shift-reduce, 97, 99
consistent, 32
constant in operand, 169
constant propagation, 175
context-free, 121
grammar, 595, 56, 61
language, 106

261

262

dangling-else, 70, 97, 99
data-flow analysis, 222, 235
dead code elimination, 231
dead variable, 170, 180
declaration, 115
global, 115
local, 115
derivation, 60, 60, 61, 71, 82
left, 64, 80
leftmost, 61
right, 64, 89
rightmost, 61
DFA, 17, 21, 46, 90, 91
combined, 39
converting NFA to, 23, 27
equivalence of, 31
minimisation, 31, 32, 38
unique minimal, 31
Digital Vax, 218
distributive, 26
domain specific language, 5
dynamic programming, 171

environment, 116, 124
epilogue, 199, 239
epsilon transition, 16
epsilon-closure, 24

FA, 17

finite automaton
graphical notation, 17

finite automaton, 10, 16
deterministic, 21
nondeterministic, 17

FIRST, 73, 76

fixed-point, 25, 74, 76, 182, 184

flag, 168
arithmetic, 169
floating-point constant, 15

floating-point numbers, 139
FOLLOW, 77

INDEX

FORTRAN, 41

frame, 198

frame pointer, 199
front-end, 136
function call, 139, 239
function calls, 167, 197
functional, 116

gen and kill sets, 181
generic types, 131
global variable, 210
go, 91, 93

grammar, 71

ambiguous, 64-66, 68, 72, 76,

85, 97
equivalent, 65
graph colouring, 186, 187
greedy algorithm, 171

hashing, 119
Haskell, 104, 117
heuristics, 186, 190

TA-32, 169
TA-64, 169
IBM System /370, 218
imperative, 116
implicit types, 132
in and out sets, 181
index check, 159

translation of, 159
index-check

elimination, 175
index-check elimination, 231
inlining, 239
instruction set description, 171
integer, 15, 139
interference, 185
interference graph, 185
intermediate code, 3, 135, 179

intermediate language, 3, 136, 167,

174

INDEX

tree-structured, 176
interpreter, 3, 135, 137, 248

Java, 41, 102, 136
jump, 139
conditional, 139, 168

263

machine code, 3, 135, 137, 167
machine language, 179
memory transfer, 139

MIPS, 169, 170, 171, 176, 218
monotonic, 24

jump-to-jump optimisation, 165, 228 name space, 119, 122

just-in-time compilation, 136
keyword, 14

label, 139
LALR(1), 89, 100, 107
language, 10, 61
context-free, 106
high-level, 135, 247
left-associative, 66, 99
left-derivation, 72
left-factorisation, 87
left-recursion, 67, 68, 87, 102
elimination of, 85
indirect, 86
lexer, 9, 37, 71
lexer generator, 37, 42
lexical, 9
analysis, 9
error, 42
lexical analysis, 2
lexing, 121
linking, 3
LISP, 217
live variable, 180, 197
at end of procedure, 182
live-range splitting, 193
liveness, 180
liveness analysis, 181
LL(1), 56, 80, 82, 85, 89, 97, 102,
107
local variables, 197
longest prefix, 41
lookahead, 80
LR, 89

nested scopes, 212, 214
NFA, 17, 91, 93, 105
combined, 38
converting to DFA, 23, 27
fragment, 19
non-associative, 67, 99
non-local variable, 210
non-recursive, 68
nonterminal, 56

Nullable, 73, 76

operator, 139
operator hierarchy, 66
optimisations, 174
overloading, 130

PA-RISC, 169

parser, 65
generator, 66, 100, 104
predictive, 71, 72, 77
shift-reduce, 90
table-driven, 89
top-down, 71

parsing, 55, 64, 121
bottom-up, 72
predictive, 76, 77, 80, 81
table-driven, 82

Pascal, 4, 67, 70, 102, 107, 119,

211, 212

pattern, 170

Pentium, 255

persistent, 116, 117

pointer, 211, 212

polymorphism, 131

PowerPC, 169

264

precedence, 59, 65, 66, 68, 69, 89,
97
declaration, 97, 99, 106
rules, 66
prefetch, 237
processor, 247
production, 56, 58
empty, 57, 76
nullable, 73, 77
prologue, 199, 239

recursive descent, 81

reduce, 90, 91, 95

register, 179
for passing function parameters,

204

register allocation, 3, 167, 179
by graph colouring, 186
global, 185

register allocator, 208

regular expression, 10, 43
converting to NFA| 19
equivalence of, 31

regular language, 31, 44

return address, 198, 204

right-associative, 67, 99

right-recursion, 68

RISC, 167, 170, 204

row-major, 156

run-time, 140

Scheme, 104, 117
scope, 115

nested, 212, 214
select, 188

INDEX

algorithm, 92
construction of table, 91, 96
SML, 4, 41, 67, 104, 117, 119, 212
source program, 249
Sparc, 169
spill, 199
spill-code, 190
spilling, 179, 188
stack automaton, 55
stack automaton, 106
stack pointer, 216
start symbol, 56, 71
starting state, 16
state, 16, 17
accepting, 17, 19, 28, 32, 37
dead, 35
final, 17
initial, 17
starting, 16, 17, 19, 27, 38
static links, 214
subset construction, 27
symbol table, 116, 116, 124
implemented as function, 118
implemented as list, 117
implemented as stack, 118
syntactical category, 122
syntax analysis, 2, 9, 55, 60, 64, 71
syntax tree, 55, 61, 71, 86

T-diagram, 248

tail call, 240

tail call optimisation, 240
target program, 249
templates, 245

terminal, 56

sequential logical operators, 148, 149 token, 9, 37, 39, 43, 71

set constraints, 78
set equation, 24, 24
shift, 90, 91, 93
simplify, 187

SLR, 56, 89, 97

transition, 16, 17, 28, 32
epsilon, 16, 94
translation
of arrays, 153
of case-statements, 152

INDEX

of declarations, 160
of expressions, 140
of function, 209
of index checks, 159
of logical operators, 147, 149
of multi-dimensional arrays, 156
of non-zero-based arrays, 159
of records/structs, 160
of statements, 144
of strings, 159
of break/exit/continue, 152
of goto, 152
type checking, 2, 121, 124
of assignments, 130
of data structures, 130
of expressions, 124
of function declarations, 127
of programs, 127
type conversion, 131
type error, 124

undecidable, 65

value numbering, 228
value numbering, 245
variable
global, 210
non-local, 210
variable name, 14

white-space, 9, 43
word length, 154
work-list algorithm, 26

265

