
Basics of Compiler Design
Extended edition

Torben Ægidius Mogensen

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF COPENHAGEN

Published through lulu.com.

c© Torben Ægidius Mogensen 2000 � 2008

torbenm@diku.dk

Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen
DENMARK

Book homepage:
http://www.diku.dk/∼torbenm/Basics

First published 2000
This edition: July 25, 2008

Contents

1 Introduction 1
1.1 What is a compiler? . 1
1.2 The phases of a compiler 2
1.3 Interpreters . 3
1.4 Why learn about compilers? 4
1.5 The structure of this book 5
1.6 To the lecturer . 6
1.7 Acknowledgements . 7
1.8 Permission to use . 8

2 Lexical Analysis 9
2.1 Introduction . 9
2.2 Regular expressions . 10

2.2.1 Shorthands . 13
2.2.2 Examples . 14

2.3 Nondeterministic �nite automata 16
2.4 Converting a regular expression to an NFA 19

2.4.1 Optimisations . 19
2.5 Deterministic �nite automata 21
2.6 Converting an NFA to a DFA 23

2.6.1 Solving set equations 24
2.6.2 The subset construction 27

2.7 Size versus speed . 30
2.8 Minimisation of DFAs . 31

2.8.1 Example . 33
2.8.2 Dead states . 35

2.9 Lexers and lexer generators 37
2.9.1 Lexer generators 42

2.10 Properties of regular languages 44
2.10.1 Relative expressive power 44

i

ii CONTENTS

2.10.2 Limits to expressive power 46

2.10.3 Closure properties 47

2.11 Further reading . 48

Exercises . 48

3 Syntax Analysis 55

3.1 Introduction . 55

3.2 Context-free grammars . 56

3.2.1 How to write context free grammars 58

3.3 Derivation . 60

3.3.1 Syntax trees and ambiguity 61

3.4 Operator precedence . 65

3.4.1 Rewriting ambiguous expression grammars 67

3.5 Other sources of ambiguity 70

3.6 Syntax analysis . 71

3.7 Predictive parsing . 72

3.8 Nullable and FIRST . 73

3.9 Predictive parsing revisited 76

3.10 FOLLOW . 77

3.11 LL(1) parsing . 80

3.11.1 Recursive descent 81

3.11.2 Table-driven LL(1) parsing 82

3.11.3 Con�icts . 83

3.12 Rewriting a grammar for LL(1) parsing 85

3.12.1 Eliminating left-recursion 85

3.12.2 Left-factorisation 87

3.12.3 Construction of LL(1) parsers summarized 88

3.13 SLR parsing . 89

3.14 Constructing SLR parse tables 91

3.14.1 Con�icts in SLR parse-tables 97

3.15 Using precedence rules in LR parse tables 97

3.16 Using LR-parser generators 100

3.16.1 Declarations and actions 100

3.16.2 Abstract syntax . 101

3.16.3 Con�ict handling in parser generators 104

3.17 Properties of context-free languages 106

3.18 Further reading . 107

Exercises . 108

CONTENTS iii

4 Symbol Tables 115
4.1 Introduction . 115
4.2 Symbol tables . 116

4.2.1 Implementation of symbol tables 116
4.2.2 Simple persistent symbol tables 117
4.2.3 A simple imperative symbol table 118
4.2.4 E�ciency issues . 119
4.2.5 Shared or separate name spaces 119

4.3 Further reading . 120
Exercises . 120

5 Type Checking 121
5.1 Introduction . 121
5.2 Attributes . 121
5.3 A small example language 122
5.4 Environments for type checking 124
5.5 Type checking expressions 124
5.6 Type checking of function declarations 127
5.7 Type checking a program 127
5.8 Advanced type checking 130
5.9 Further reading . 132
Exercises . 132

6 Intermediate-Code Generation 135
6.1 Introduction . 135
6.2 Choosing an intermediate language 136
6.3 The intermediate language 138
6.4 Generating code from expressions 140

6.4.1 Examples of translation 142
6.5 Translating statements . 144
6.6 Logical operators . 147

6.6.1 Sequential logical operators 149
6.7 Advanced control statements 152
6.8 Translating structured data 153

6.8.1 Floating-point values 153
6.8.2 Arrays . 153
6.8.3 Strings . 159
6.8.4 Records/structs and unions 160

6.9 Translating declarations 160
6.9.1 Example: Simple local declarations 161

6.10 Further reading . 161

iv CONTENTS

Exercises . 162

7 Machine-Code Generation 167
7.1 Introduction . 167
7.2 Conditional jumps . 168
7.3 Constants . 169
7.4 Exploiting complex instructions 170

7.4.1 Two-address instructions 172
7.5 Optimisations . 174
7.6 Further reading . 176
Exercises . 176

8 Register Allocation 179
8.1 Introduction . 179
8.2 Liveness . 180
8.3 Liveness analysis . 181
8.4 Interference . 185
8.5 Register allocation by graph colouring 186
8.6 Spilling . 188
8.7 Heuristics . 190

8.7.1 Removing redundant moves 192
8.8 Further reading . 193
Exercises . 193

9 Function calls 197
9.1 Introduction . 197

9.1.1 The call stack . 197
9.2 Activation records . 198
9.3 Prologues, epilogues and call-sequences 199
9.4 Caller-saves versus callee-saves 202
9.5 Using registers to pass parameters 204
9.6 Interaction with the register allocator 208
9.7 Accessing non-local variables 210

9.7.1 Global variables . 210
9.7.2 Call-by-reference parameters 211
9.7.3 Nested scopes . 212

9.8 Variants . 216
9.8.1 Variable-sized frames 216
9.8.2 Variable number of parameters 217
9.8.3 Direction of stack-growth and position of FP . . . 217
9.8.4 Register stacks . 218

CONTENTS v

9.9 Further reading . 218
Exercises . 219

10 Analysis and optimisation 221
10.1 Data-�ow analysis . 222
10.2 Common subexpression elimination 223

10.2.1 Available assignments 223
10.2.2 Example of available-assignments analysis 226
10.2.3 Using available assignments for common subex-

pression elimination 228
10.3 Jump-to-jump elimination 228
10.4 Index-check elimination 231
10.5 Limitations of data-�ow analyses 235
10.6 Loop optimisations . 235

10.6.1 code hoisting . 235
10.6.2 Memory prefetching 237

10.7 Optimisations for function calls 239
10.7.1 Inlining . 239
10.7.2 Tail call optimisation 240

10.8 Specialisation . 243
10.9 Further reading . 245
Exercises . 245

11 Bootstrapping a compiler 247
11.1 Introduction . 247
11.2 Notation . 248
11.3 Compiling compilers . 250

11.3.1 Full bootstrap . 252
11.4 Further reading . 255
Exercises . 255

Chapter 3

Syntax Analysis

3.1 Introduction

Where lexical analysis splits the input into tokens, the purpose of syntax
analysis (also known as parsing) is to recombine these tokens. Not back
into a list of characters, but into something that re�ects the structure
of the text. This �something� is typically a data structure called the
syntax tree of the text. As the name indicates, this is a tree structure.
The leaves of this tree are the tokens found by the lexical analysis, and
if the leaves are read from left to right, the sequence is the same as
in the input text. Hence, what is important in the syntax tree is how
these leaves are combined to form the structure of the tree and how the
interior nodes of the tree are labelled.

In addition to �nding the structure of the input text, the syntax
analysis must also reject invalid texts by reporting syntax errors.

As syntax analysis is less local in nature than lexical analysis, more
advanced methods are required. We, however, use the same basic strat-
egy: A notation suitable for human understanding is transformed into
a machine-like low-level notation suitable for e�cient execution. This
process is called parser generation.

The notation we use for human manipulation is context-free gram-
mars1, which is a recursive notation for describing sets of strings and
imposing a structure on each such string. This notation can in some
cases be translated almost directly into recursive programs, but it is of-
ten more convenient to generate stack automata. These are similar to
the �nite automata used for lexical analysis but they can additionally
use a stack, which allows counting and non-local matching of symbols.

1The name refers to the fact that derivation is independent of context.

55

56 CHAPTER 3. SYNTAX ANALYSIS

We shall see two ways of generating such automata. The �rst of these,
LL(1), is relatively simple, but works only for a somewhat restricted
class of grammars. The SLR construction, which we present later, is
more complex but accepts a wider class of grammars. Sadly, neither of
these work for all context-free grammars. Tools that handle all context-
free grammars exist, but they can incur a severe speed penalty, which is
why most parser generators restrict the class of input grammars.

3.2 Context-free grammars

Like regular expressions, context-free grammars describe sets of strings,
i.e., languages. Additionally, a context-free grammar also de�nes struc-
ture on the strings in the language it de�nes. A language is de�ned over
some alphabet, for example the set of tokens produced by a lexer or the
set of alphanumeric characters. The symbols in the alphabet are called
terminals.

A context-free grammar recursively de�nes several sets of strings.
Each set is denoted by a name, which is called a nonterminal. The set
of nonterminals is disjoint from the set of terminals. One of the non-
terminals are chosen to denote the language described by the grammar.
This is called the start symbol of the grammar. The sets are described
by a number of productions. Each production describes some of the pos-
sible strings that are contained in the set denoted by a nonterminal. A
production has the form

N → X1 . . . Xn

where N is a nonterminal and X1 . . . Xn are zero or more symbols, each
of which is either a terminal or a nonterminal. The intended meaning of
this notation is to say that the set denoted by N contains strings that are
obtained by concatenating strings from the sets denoted by X1 . . . Xn.
In this setting, a terminal denotes a singleton set, just like alphabet
characters in regular expressions. We will, when no confusion is likely,
equate a nonterminal with the set of strings it denotes

Some examples:

A → a

says that the set denoted by the nonterminal A contains the one-character
string a.

A → aA

3.2. CONTEXT-FREE GRAMMARS 57

says that the set denoted by A contains all strings formed by putting
an a in front of a string taken from the set denoted by A. Together,
these two productions indicate that A contains all non-empty sequences
of as and is hence (in the absence of other productions) equivalent to
the regular expression a+.

We can de�ne a grammar equivalent to the regular expression a∗ by
the two productions

B →
B → aB

where the �rst production indicates that the empty string is part of the
set B. Compare this grammar with the de�nition of s∗ in �gure 2.1.

Productions with empty right-hand sides are called empty produc-
tions. These are sometimes written with an ε on the right hand side
instead of leaving it empty.

So far, we have not described any set that could not just as well
have been described using regular expressions. Context-free grammars
are, however, capable of expressing much more complex languages. In
section 2.10, we noted that the language {anbn | n ≥ 0} is not regular.
It is, however, easily described by the grammar

S →
S → aSb

The second production ensures that the as and bs are paired symmetri-
cally around the middle of the string, ensuring that they occur in equal
number.

The examples above have used only one nonterminal per grammar.
When several nonterminals are used, we must make it clear which of
these is the start symbol. By convention (if nothing else is stated), the
nonterminal on the left-hand side of the �rst production is the start
symbol. As an example, the grammar

T → R
T → aTa
R → b

R → bR

has T as start symbol and denotes the set of strings that start with any
number of as followed by a non-zero number of bs and then the same
number of as with which it started.

58 CHAPTER 3. SYNTAX ANALYSIS

Form of si Productions for Ni

ε Ni →
a Ni → a

sjsk Ni → NjNk

sj |sk Ni → Nj

Ni → Nk

sj∗ Ni → NjNi

Ni →
sj+ Ni → NjNi

Ni → Nj

sj? Ni → Nj

Ni →

Each subexpression of the regular expression is numbered
and subexpression si is assigned a nonterminal Ni. The pro-
ductions for Ni depend on the shape of si as shown in the
table above.

Figure 3.1: From regular expressions to context free grammars

Sometimes, a shorthand notation is used where all the productions of
the same nonterminal are combined to a single rule, using the alternative
symbol (|) from regular expressions to separate the right-hand sides. In
this notation, the above grammar would read

T → R | aTa
R → b | bR

There are still four productions in the grammar, even though the arrow
symbol → is only used twice.

3.2.1 How to write context free grammars

As hinted above, a regular expression can systematically be rewritten as
a context free grammar by using a nonterminal for every subexpression
in the regular expression and using one or two productions for each non-
terminal. The construction is shown in �gure 3.1. So, if we can think of a
way of expressing a language as a regular expression, it is easy to make a
grammar for it. However, we will also want to use grammars to describe
non-regular languages. An example is the kind of arithmetic expressions

3.2. CONTEXT-FREE GRAMMARS 59

Exp → Exp +Exp
Exp → Exp -Exp
Exp → Exp *Exp
Exp → Exp /Exp
Exp → num
Exp → (Exp)

Grammar 3.2: Simple expression grammar

that are part of most programming languages (and also found on elec-
tronic calculators). Such expressions can be described by grammar 3.2.
Note that, as mentioned in section 2.10, the matching parentheses can't
be described by regular expressions, as these can't �count� the number of
unmatched opening parentheses at a particular point in the string. How-
ever, if we didn't have parentheses in the language, it could be described
by the regular expression

num((+|-|*|/)num)∗

Even so, the regular description isn't useful if you want operators to have
di�erent precedence, as it treats the expression as a �at string rather
than as having structure. We will look at structure in sections 3.3.1
and 3.4.

Most constructions from programming languages are easily expressed
by context free grammars. In fact, most modern languages are designed
this way.

When writing a grammar for a programming language, one normally
starts by dividing the constructs of the language into di�erent syntac-
tic categories. A syntactic category is a sub-language that embodies a
particular concept. Examples of common syntactic categories in pro-
gramming languages are:

Expressions are used to express calculation of values.

Statements express actions that occur in a particular sequence.

Declarations express properties of names used in other parts of the
program.

Each syntactic category is denoted by a main nonterminal, e.g., Exp
from grammar 3.2. More nonterminals might be needed to describe a

60 CHAPTER 3. SYNTAX ANALYSIS

Stat → id := Exp
Stat → Stat ;Stat
Stat → if Exp then Stat else Stat
Stat → if Exp then Stat

Grammar 3.3: Simple statement grammar

syntactic category or provide structure to it, as we shall see, and pro-
ductions for one syntactic category can refer to nonterminals for other
syntactic categories. For example, statements may contain expressions,
so some of the productions for statements use the main nonterminal for
expressions. A simple grammar for statements might look like gram-
mar 3.3, which refers to the Exp nonterminal from grammar 3.2.

3.3 Derivation

So far, we have just appealed to intuitive notions of recursion when we
describe the set of strings that a grammar produces. Since the pro-
ductions are similar to recursive set equations, we might expect to use
the techniques from section 2.6.1 to �nd the set of strings denoted by
a grammar. However, though these methods in theory apply to in�nite
sets by considering limits of chains of sets, they are only practically use-
ful when the sets are �nite. Instead, we below introduce the concept of
derivation. An added advantage of this approach is, as we will later see,
that syntax analysis is closely related to derivation.

The basic idea of derivation is to consider productions as rewrite
rules: Whenever we have a nonterminal, we can replace this by the
right-hand side of any production in which the nonterminal appears on
the left-hand side. We can do this anywhere in a sequence of symbols
(terminals and nonterminals) and repeat doing so until we have only
terminals left. The resulting sequence of terminals is a string in the
language de�ned by the grammar. Formally, we de�ne the derivation
relation ⇒ by the three rules

1. αNβ ⇒ αγβ if there is a production N → γ
2. α ⇒ α
3. α ⇒ γ if there is a β such that α ⇒ β and β ⇒ γ

where α, β and γ are (possibly empty) sequences of grammar symbols
(terminals and nonterminals). The �rst rule states that using a pro-

3.3. DERIVATION 61

T → R
T → aTc
R →
R → RbR

Grammar 3.4: Example grammar

duction as a rewrite rule (anywhere in a sequence of grammar symbols)
is a derivation step. The second states that the derivation relation is
re�exive, i.e., that a sequence derives itself. The third rule describes
transitivity, i.e., that a sequence of derivations is in itself a derivation2.

We can use derivation to formally de�ne the language that a context-
free grammar generates:

De�nition 3.1 Given a context-free grammar G with start symbol S,
terminal symbols T and productions P , the language L(G) that G gen-
erates is de�ned to be the set of strings of terminal symbols that can
be obtained by derivation from S using the productions P , i.e., the set
{w ∈ T ∗ | S ⇒ w}.

As an example, we see that grammar 3.4 generates the string aabbbcc
by the derivation shown in �gure 3.5. We have, for clarity, in each
sequence of symbols underlined the nonterminal that is rewritten in the
following step.

In this derivation, we have applied derivation steps sometimes to the
leftmost nonterminal, sometimes to the rightmost and sometimes to a
nonterminal that was neither. However, since derivation steps are local,
the order doesn't matter. So, we might as well decide to always rewrite
the leftmost nonterminal, as shown in �gure 3.6.

A derivation that always rewrites the leftmost nonterminal is called
a leftmost derivation. Similarly, a derivation that always rewrites the
rightmost nonterminal is called a rightmost derivation.

3.3.1 Syntax trees and ambiguity

We can draw a derivation as a tree: The root of the tree is the start
symbol of the grammar, and whenever we rewrite a nonterminal we add

2The mathematically inclined will recognise that derivation is a preorder on se-
quences of grammar symbols.

62 CHAPTER 3. SYNTAX ANALYSIS

T
⇒ aTc
⇒ aaTcc
⇒ aaRcc

⇒ aaRbRcc

⇒ aaRbcc

⇒ aaRbRbcc

⇒ aaRbRbRbcc

⇒ aaRbbRbcc

⇒ aabbRbcc

⇒ aabbbcc

Figure 3.5: Derivation of the string aabbbcc using grammar 3.4

T
⇒ aTc
⇒ aaTcc
⇒ aaRcc

⇒ aaRbRcc

⇒ aaRbRbRcc

⇒ aabRbRcc

⇒ aabRbRbRcc

⇒ aabbRbRcc

⇒ aabbbRcc

⇒ aabbbcc

Figure 3.6: Leftmost derivation of the string aabbbcc using grammar 3.4

3.3. DERIVATION 63

T
�

�
@
@

a T
�

�
@
@

c

a T c

R
�

�
@
@

R
�

�
@
@

b R

R b R
�

�
@
@

ε

ε R b R

ε ε

Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4

T
�

�
@
@

a T
�

�
@
@

c

a T c

R
�

�
@
@

R b R
�

�
@
@

ε R b R
�

�
@
@

ε R b R

ε ε

Figure 3.8: Alternative syntax tree for the string aabbbcc using gram-
mar 3.4

64 CHAPTER 3. SYNTAX ANALYSIS

T → R
T → aTc
R →
R → bR

Grammar 3.9: Unambiguous version of grammar 3.4

as its children the symbols on the right-hand side of the production that
was used. The leaves of the tree are terminals which, when read from
left to right, form the derived string. If a nonterminal is rewritten using
an empty production, an ε is shown as its child. This is also a leaf node,
but is ignored when reading the string from the leaves of the tree.

When we write such a syntax tree, the order of derivation is irrele-
vant: We get the same tree for left derivation, right derivation or any
other derivation order. Only the choice of production for rewriting each
nonterminal matters.

As an example, the derivations in �gures 3.5 and 3.6 yield the same
syntax tree, which is shown in �gure 3.7.

The syntax tree adds structure to the string that it derives. It is this
structure that we exploit in the later phases of the compiler.

For compilation, we do the derivation backwards: We start with a
string and want to produce a syntax tree. This process is called syntax
analysis or parsing.

Even though the order of derivation doesn't matter when construct-
ing a syntax tree, the choice of production for that nonterminal does.
Obviously, di�erent choices can lead to di�erent strings being derived,
but it may also happen that several di�erent syntax trees can be built for
the same string. As an example, �gure 3.8 shows an alternative syntax
tree for the same string that was derived in �gure 3.7.

When a grammar permits several di�erent syntax trees for some
strings we call the grammar ambiguous. If our only use of grammar is to
describe sets of strings, ambiguity isn't a problem. However, when we
want to use the grammar to impose structure on strings, the structure
had better be the same every time. Hence, it is a desireable feature for a
grammar to be unambiguous. In most (but not all) cases, an ambiguous
grammar can be rewritten to an unambiguous grammar that generates
the same set of strings, or external rules can be applied to decide which
of the many possible syntax trees is the �right one�. An unambiguous
version of grammar 3.4 is shown in �gure 3.9.

3.4. OPERATOR PRECEDENCE 65

How do we know if a grammar is ambiguous? If we can �nd a string
and show two alternative syntax trees for it, this is a proof of ambiguity.
It may, however, be hard to �nd such a string and, when the grammar
is unambiguous, even harder to show that this is the case. In fact, the
problem is formally undecidable, i.e., there is no method that for all
grammars can answer the question �Is this grammar ambiguous?�.

But in many cases it is not di�cult to detect and prove ambiguity.
For example, any grammar that has a production of the form

N → NαN

where α is any sequence of grammar symbols, is ambiguous. This is, for
example, the case with grammars 3.2 and 3.4.

We will, in sections 3.11 and 3.13, see methods for constructing
parsers from grammars. These methods have the property that they
only work on unambiguous grammars, so successful construction of a
parser is a proof of unambiguity. However, the methods may also fail
on certain unambiguous grammars, so they can not be used to prove
ambiguity.

In the next section, we will see ways of rewriting a grammar to get
rid of some sources of ambiguity. These transformations preserve the
language that the grammar generates. By using such transformations
(and others, which we will see later), we can create a large set of equiva-
lent grammars, i.e., grammars that generate the same language (though
they may impose di�erent structures on the strings of the language).

Given two grammars, it would be nice to be able to tell if they are
equivalent. Unfortunately, no known method is able to decide this in all
cases, but, unlike ambiguity, it is not (at the time of writing) known if
such a method may or may not theoretically exist. Sometimes, equiv-
alence can be proven e.g. by induction over the set of strings that the
grammars produce. The converse can be proven by �nding an example
of a string that one grammar can generate but the other not. But in
some cases, we just have to take claims of equivalence on faith or give
up on deciding the issue.

3.4 Operator precedence

As mentioned in section 3.2.1, we can describe traditional arithmetic
expressions by grammar 3.2. Note that num is a terminal that denotes
all integer constants and that, here, the parentheses are terminal symbols

66 CHAPTER 3. SYNTAX ANALYSIS

Exp
�

�
@
@

Exp + Exp
�

�
@
@

2 Exp * Exp

3 4

Figure 3.10: Preferred syntax tree for 2+3*4 using grammar 3.2

(unlike in regular expressions, where they are used to impose structure
on the regular expressions).

This grammar is ambiguous, as evidenced by, e.g., the production

Exp → Exp +Exp

which has the form that in section 3.3.1 was claimed to imply ambiguity.
This ambiguity is not surprising, as we are used to the fact that an
expression like 2+3*4 can be read in two ways: Either as multiplying
the sum of 2 and 3 by 4 or as adding 2 to the product of 3 and 4. Simple
electronic calculators will choose the �rst of these interpretations (as
they always calculate from left to right), whereas scienti�c calculators
and most programming languages will choose the second, as they use a
hierarchy of operator precedences which dictate that the product must be
calculated before the sum. The hierarchy can be overridden by explicit
parenthesisation, e.g., (2+3)*4.

Most programming languages use the same convention as scienti�c
calculators, so we want to make this explicit in the grammar. Ideally,
we would like the expression 2+3*4 to generate the syntax tree shown
in �gure 3.10, which re�ects the operator precedences by grouping of
subexpressions: When evaluating an expression, the subexpressions rep-
resented by subtrees of the syntax tree are evaluated before the topmost
operator is applied.

A possible way of resolving the ambiguity is to use precedence rules
during syntax analysis to select among the possible syntax trees. Many
parser generators allow this approach, as we shall see in section 3.15.
However, some parsing methods require the grammars to be unambigu-
ous, so we have to express the operator hierarchy in the grammar itself.
To clarify this, we �rst de�ne some concepts:

• An operator ⊕ is left-associative if the expression a ⊕ b ⊕ c must
be evaluated from left to right, i.e., as (a⊕ b)⊕ c.

3.4. OPERATOR PRECEDENCE 67

• An operator ⊕ is right-associative if the expression a⊕ b⊕ c must
be evaluated from right to left, i.e., as a⊕ (b⊕ c).

• An operator ⊕ is non-associative if expressions of the form a⊕b⊕c
are illegal.

By the usual convention, - and / are left-associative, as e.g., 2-3-4 is
calculated as (2-3)-4. + and * are associative in the mathematical
sense, meaning that it doesn't matter if we calculate from left to right
or from right to left. However, to avoid ambiguity we have to choose
one of these. By convention (and similarity to - and /) we choose to
let these be left-associative as well. Also, having a left-associative - and
right-associative + would not help resolving the ambiguity of 2-3+4, as
the operators so-to-speak �pull in di�erent directions�.

List construction operators in functional languages, e.g., :: and @

in SML, are typically right-associative, as are function arrows in types:
a -> b -> c is read as a -> (b -> c). The assignment operator in C
is also right-associative: a=b=c is read as a=(b=c).

In some languages (like Pascal), comparison operators (like < or >)
are non-associative, i.e., you are not allowed to write 2 < 3 < 4.

3.4.1 Rewriting ambiguous expression grammars

If we have an ambiguous grammar

E → E ⊕ E
E → num

we can rewrite this to an unambiguous grammar that generates the
correct structure. As this depends on the associativity of ⊕, we use
di�erent rewrite rules for di�erent associativities.

If ⊕ is left-associative, we make the grammar left-recursive by having
a recursive reference to the left only of the operator symbol:

E → E ⊕ E′

E → E′

E′ → num

Now, the expression 2⊕ 3⊕ 4 can only be parsed as

68 CHAPTER 3. SYNTAX ANALYSIS

E
�

�
@
@

E
�

�
@
@

⊕ E′

E ⊕ E′ 4

E′ 3

2

We get a slightly more complex syntax tree than in �gure 3.10, but not
enormously so.

We handle right-associativity in a similar fashion: We make the of-
fending production right-recursive:

E → E′ ⊕ E
E → E′

E′ → num

Non-associative operators are handled by non-recursive productions:

E → E′ ⊕ E′

E → E′

E′ → num

Note that the latter transformation actually changes the language that
the grammar generates, as it makes expressions of the form num ⊕
num⊕ num illegal.

So far, we have handled only cases where an operator interacts with
itself. This is easily extended to the case where several operators with
the same precedence and associativity interact with each other, as for
example + and -:

E → E +E′

E → E -E′

E → E′

E′ → num

Operators with the same precedence must have the same associativity for
this to work, as mixing left-recursive and right-recursive productions for
the same nonterminal makes the grammar ambiguous. As an example,
the grammar

3.4. OPERATOR PRECEDENCE 69

Exp → Exp +Exp2
Exp → Exp -Exp2
Exp → Exp2
Exp2 → Exp2 *Exp3
Exp2 → Exp2 /Exp3
Exp2 → Exp3
Exp3 → num
Exp3 → (Exp)

Grammar 3.11: Unambiguous expression grammar

E → E +E′

E → E′ ⊕ E
E → E′

E′ → num

seems like an obvious generalisation of the principles used above, giv-
ing + and ⊕ the same precedence and di�erent associativity. But not
only is the grammar ambiguous, it doesn't even accept the intended lan-
guage. For example, the string num+num⊕num is not derivable by
this grammar.

In general, there is no obvious way to resolve ambiguity in an expres-
sion like 1+2⊕3, where + is left-associative and ⊕ is right-associative (or
vice-versa). Hence, most programming languages (and most parser gen-
erators) require operators at the same precedence level to have identical
associativity.

We also need to handle operators with di�erent precedences. This is
done by using a nonterminal for each precedence level. The idea is that
if an expression uses an operator of a certain precedence level, then its
subexpressions cannot use operators of lower precedence (unless these
are inside parentheses). Hence, the productions for a nonterminal cor-
responding to a particular precedence level refers only to nonterminals
that correspond to the same or higher precedence levels, unless paren-
theses or similar bracketing constructs disambiguate the use of these.
Grammar 3.11 shows how these rules are used to make an unambiguous
version of grammar 3.2. Figure 3.12 show the syntax tree for 2+3*4

using this grammar.

70 CHAPTER 3. SYNTAX ANALYSIS

Exp
�

�
@
@

Exp + Exp2
�

�
@
@

Exp2Exp2 * Exp3

Exp3Exp3 4

2 3

Figure 3.12: Syntax tree for 2+3*4 using grammar 3.11

3.5 Other sources of ambiguity

Most of the potential ambiguity in grammars for programming languages
comes from expression syntax and can be handled by exploiting prece-
dence rules as shown in section 3.4. Another classical example of ambi-
guity is the �dangling-else� problem.

Imperative languages like Pascal or C often let the else-part of a
conditional be optional, like shown in grammar 3.3. The problem is that
it isn't clear how to parse, for example,

if p then if q then s1 else s2

According to the grammar, the else can equally well match either if.
The usual convention is that an else matches the closest not previously
matched if, which, in the example, will make the elsematch the second
if.

How do we make this clear in the grammar? We can treat if, then
and else as a kind of right-associative operators, as this would make
them group to the right, making an if-then match the closest else.
However, the grammar transformations shown in section 3.4 can't di-
rectly be applied to grammar 3.3, as the productions for conditionals
don't have the right form.

Instead we use the following observation: When an if and an else

match, all ifs that occur between these must have matching elses.
This can easily be proven by assuming otherwise and concluding that
this leads to a contradiction.

Hence, we make two nonterminals: One for matched (i.e. with else-
part) conditionals and one for unmatched (i.e. without else-part) con-
ditionals. The result is shown in grammar 3.13. This grammar also

3.6. SYNTAX ANALYSIS 71

Stat → Stat2 ;Stat
Stat → Stat2
Stat2 → Matched
Stat2 → Unmatched
Matched → if Exp then Matched else Matched
Matched → id := Exp
Unmatched → if Exp then Matched else Unmatched
Unmatched → if Exp then Stat2

Grammar 3.13: Unambiguous grammar for statements

resolves the associativity of semicolon (right) and the precedence of if
over semicolon.

An alternative to rewriting grammars to resolve ambiguity is to use
an ambiguous grammar and resolve con�icts by using precedence rules
during parsing. We shall look into this in section 3.15.

All cases of ambiguity must be treated carefully: It is not enough
that we eliminate ambiguity, we must do so in a way that results in the
desired structure: The structure of arithmetic expressions is signi�cant,
and it makes a di�erence to which if an else is matched.

3.6 Syntax analysis

The syntax analysis phase of a compiler will take a string of tokens
produced by the lexer, and from this construct a syntax tree for the
string by �nding a derivation of the string from the start symbol of the
grammar.

This can be done by guessing derivations until the right one is found,
but random guessing is hardly an e�ective method. Even so, some pars-
ing techniques are based on �guessing� derivations. However, these make
sure, by looking at the string, that they will always guess right. These
are called predictive parsing methods. Predictive parsers always build
the syntax tree from the root down to the leaves and are hence also
called (deterministic) top-down parsers.

Other parsers go the other way: They search for parts of the input
string that matches right-hand sides of productions and rewrite these
to the left-hand nonterminals, at the same time building pieces of the
syntax tree. The syntax tree is eventually completed when the string has

72 CHAPTER 3. SYNTAX ANALYSIS

been rewritten (by inverse derivation) to the start symbol. Also here,
we wish to make sure that we always pick the �right� rewrites, so we
get deterministic parsing. Such methods are called bottom-up parsing
methods.

We will in the next sections �rst look at predictive parsing and later
at a bottom-up parsing method called SLR parsing.

3.7 Predictive parsing

If we look at the left-derivation in �gure 3.6, we see that, to the left of
the rewritten nonterminals, there are only terminals. These terminals
correspond to a pre�x of the string that is being parsed. In a parsing
situation, this pre�x will be the part of the input that has already been
read. The job of the parser is now to choose the production by which the
leftmost unexpanded nonterminal should be rewritten. Our aim is to be
able to make this choice deterministically based on the next unmatched
input symbol.

If we look at the third line in �gure 3.6, we have already read two
as and (if the input string is the one shown in the bottom line) the next
symbol is a b. Since the right-hand side of the production

T → aTc

starts with an a, we obviously can't use this. Hence, we can only rewrite
T using the production

T → R

We are not quite as lucky in the next step. None of the productions
for R start with a terminal symbol, so we can't immediately choose a
production based on this. As the grammar (grammar 3.4) is ambiguous,
it should not be a surprise that we can't always choose uniquely. If we
instead use the unambiguous grammar (grammar 3.9) we can immedi-
ately choose the second production for R. When all the bs are read and
we are at the following c, we choose the empty production for R and
match the remaining input with the rest of the derived string.

If we can always choose a unique production based on the next input
symbol, we are able to do this kind of predictive parsing.

3.8. NULLABLE AND FIRST 73

3.8 Nullable and FIRST

In simple cases, like the above, all but one of the productions for a
nonterminal start with distinct terminals and the remaining production
does not start with a terminal. However, the method can be applied
also for grammers that don't have this property: Even if several produc-
tions start with nonterminals, we can choose among these if the strings
these productions can derive begin with symbols from known disjoint
sets. Hence, we de�ne the function FIRST, which given a sequence of
grammar symbols (e.g. the right-hand side of a production) returns the
set of symbols with which strings derived from that sequence can begin:

De�nition 3.2 A symbol c is in FIRST(α) if and only if α ⇒ cβ for
some sequence β of grammar symbols.

To calculate FIRST, we need an auxiliary function Nullable, which for a
sequence α of grammar symbols indicates whether or not that sequence
can derive the empty string:

De�nition 3.3 A sequence α of grammar symbols is Nullable (we write
this as Nullable(α)) if and only if α ⇒ ε.

A production N → α is called nullable if Nullable(α). We describe cal-
culation of Nullable by case analysis over the possible forms of sequences
of grammar symbols:

Algorithm 3.4

Nullable(ε) = true
Nullable(a) = false
Nullable(α β) = Nullable(α) ∧ Nullable(β)
Nullable(N) = Nullable(α1) ∨ . . . ∨ Nullable(αn),

where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of
grammar symbols and ε represents the empty sequence of grammar sym-
bols.

The equations are quite natural: Any occurrence of a terminal on
a right-hand side makes Nullable false for that right-hand side, but a
nonterminal is nullable if any production has a nullable.

74 CHAPTER 3. SYNTAX ANALYSIS

Note that this is a recursive de�nition since Nullable for a nonter-
minal is de�ned in terms of Nullable for its right-hand sides, which may
contain that same nonterminal. We can solve this in much the same way
that we solved set equations in section 2.6.1. We have, however, now
booleans instead of sets and several equations instead of one. Still, the
method is essentially the same: We have a set of boolean equations:

X1 = F1(X1, . . . , Xn)
...

Xn = Fn(X1, . . . , Xn)

We initially assume X1, . . . , Xn to be all false. We then, in any order,
calculate the right-hand sides of the equations and update the variable
on the left-hand side by the calculated value. We continue until all
equations are satis�ed. In section 2.6.1, we required the functions to be
monotonic with respect to subset. Correspondingly, we now require the
boolean functions to be monotonic with respect to truth: If we make
more arguments true, the result will also be more true (i.e., it may stay
unchanged, change from false to true, but never change from true to
false).

If we look at grammar 3.9, we get these equations for nonterminals
and right-hand sides:

Nullable(T) = Nullable(R) ∨ Nullable(aTc)
Nullable(R) = Nullable(ε) ∨ Nullable(bR)

Nullable(R) = Nullable(R)
Nullable(aTc) = Nullable(a) ∧ Nullable(T) ∧ Nullable(c)
Nullable(ε) = true
Nullable(bR) = Nullable(b) ∧ Nullable(R)

In a �xed-point calculation, we initially assume that Nullable is false for
all nonterminals and use this as a basis for calculating Nullable for �rst
the right-hand sides and then the nonterminals. We repeat recalculating
these until there is no change between two iterations. Figure 3.14 shows
the �xed-point iteration for the above equations. In each iteration, we
�rst evaluate the formulae for the right-hand sides and then use the
results of this to evaluate the nonterminals. The right-most column
shows the �nal result.

We can calculate FIRST in a similar fashion to Nullable:

3.8. NULLABLE AND FIRST 75

Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R false false true true
aTc false false false false

ε false true true true
bR false false false false

Nonterminal
T false false true true
R false true true true

Figure 3.14: Fixed-point iteration for calculation of Nullable

Algorithm 3.5

FIRST(ε) = ∅
FIRST(a) = {a}

FIRST(α β) =
{

FIRST(α) ∪ FIRST(β) if Nullable(α)
FIRST(α) if not Nullable(α)

FIRST(N) = FIRST(α1) ∪ . . . ∪ FIRST(αn)
where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of
grammar symbols and ε represents the empty sequence of grammar sym-
bols.

The only nontrivial equation is that for αβ. Obviously, anything that
can start a string derivable from α can also start a string derivable from
αβ. However, if α is nullable, a derivation may proceed as αβ ⇒ β ⇒ · · ·,
so anything in FIRST(β) is also in FIRST(αβ).

The set-equations are solved in the same general way as the boolean
equations for Nullable, but since we work with sets, we initailly assume
every set to be empty. For grammar 3.9, we get the following equations:

FIRST(T) = FIRST(R) ∪ FIRST(aTc)
FIRST(R) = FIRST(ε) ∪ FIRST(bR)

FIRST(R) = FIRST(R)
FIRST(aTc) = FIRST(a)
FIRST(ε) = ∅
FIRST(bR) = FIRST(b)

76 CHAPTER 3. SYNTAX ANALYSIS

Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R ∅ ∅ {b} {b}
aTc ∅ {a} {a} {a}

ε ∅ ∅ ∅ ∅
bR ∅ {b} {b} {b}

Nonterminal
T ∅ {a} {a, b} {a, b}
R ∅ {b} {b} {b}

Figure 3.15: Fixed-point iteration for calculation of FIRST

The �xed-point iteration is shown in �gure 3.15.

When working with grammars by hand, it is usually quite easy to
see for most productions if they are nullable and what their FIRST sets
are. For example, a production is not nullable if its right-hand side has
a terminal anywhere, and if the right-hand side starts with a terminal,
the FIRST set consists of only that symbol. Sometimes, however, it is
necessary to go through the motions of solving the equations. When
working by hand, it is often useful to simplify the equations before the
�xed-point iteration, e.g., reduce FIRST(aTc) to {a}.

3.9 Predictive parsing revisited

We are now ready to construct predictive parsers for a wider class of
grammars: If the right-hand sides of the productions for a nonterminal
have disjoint FIRST sets, we can use the next input symbol to choose
among the productions.

In section 3.7, we picked the empty production (if any) on any symbol
that was not in the FIRST sets of the non-empty productions for the
same nonterminal. We must actually do this for any production that
is Nullable. Hence, at most one production for a nonterminal may be
nullable, as otherwise we would not be able to choose deterministically
between the two.

We said in section 3.3.1 that our syntax analysis methods will detect
ambiguous grammars. However, this isn't true with the method as stated
above: We will get unique choice of production even for some ambiguous
grammars, including grammar 3.4. The syntax analysis will in this case
just choose one of several possible syntax trees for a given input string.

3.10. FOLLOW 77

In many cases, we do not consider such behaviour acceptable. In fact,
we would very much like our parser construction method to tell us if we
by mistake write an ambiguous grammar.

Even worse, the rules for predictive parsing as presented here might
for some unambiguous grammars give deterministic choice of produc-
tion, but reject strings that actually belong to the language described
by the grammar. If we, for example, change the second production in
grammar 3.9 to

T → aTb

this will not change the choices made by the predictive parser for non-
terminal R. However, always choosing the last production for R on a b

will lead to erroneous rejection of many strings, including ab.
Hence, we add to our construction of predictive parsers a test that

will reject ambiguous grammars and those unambiguous grammars that
can cause the parser to fail erroneously.

We have so far simply chosen a nullable production if and only if no
other choice is possible. However, we should extend this to say that we
choose a production N → α on symbol c if one of the two conditions
below are satis�ed:

1) c ∈ FIRST(α).

2) Nullable(α) and c can validly follow N in a derivation.

This makes us choose nullable productions more often than before. This,
in turn, leads to more cases where we can not choose uniquely, including
the example above with the modi�ed grammar 3.9 (since b can follow R
in valid derivations) and all ambiguous grammars that are not caught
by the original method.

3.10 FOLLOW

For the purpose of rejecting grammars that are problematical for pre-
dictive parsing, we introduce FOLLOW sets for nonterminals.

De�nition 3.6 A terminal symbol a is in FOLLOW(N) if and only if
there is a derivation from the start symbol S of the grammar such that
S ⇒ αNaβ, where α and β are (possibly empty) sequences of grammar
symbols.

78 CHAPTER 3. SYNTAX ANALYSIS

In other words, a terminal c is in FOLLOW(N) if c may follow N at
some point in a derivation.

To correctly handle end-of-string conditions, we want to detect if
S ⇒ αN , i.e., if there are derivations where N can be followed by the
end of input. It turns out to be easy to do this by adding an extra
production to the grammar:

S′ → S$

where S′ is a new nonterminal that replaces S as start symbol and $ is
a new terminal symbol representing the end of input. Hence, in the new
grammar, $ will be in FOLLOW(N) exactly if S′ ⇒ αN$ which is the
case exactly when S ⇒ αN .

The easiest way to calculate FOLLOW is to generate a collection of
set constraints, which are subsequently solved. A production

M → αNβ

generates the constraint FIRST(β) ⊆ FOLLOW(N), since β, obviously,
can follow N . Furthermore, if Nullable(β) the production also generates
the constraint
FOLLOW(M) ⊆ FOLLOW(N) (note the direction of the inclusion).
The reason is that, if a symbol c is in FOLLOW(M), then there (by
de�nition) is a derivation S′ ⇒ γMcδ. But since M → αNβ and β
is nullable, we can continue this by γMcδ ⇒ γαNcδ, so c is also in
FOLLOW(N).

If a right-hand side contains several occurrences of nonterminals, we
add constraints for all occurrences, i.e., splitting the right-hand side
into di�erent αs, Ns and βs. For example, the production A → BcB
generates the constraint {c} ⊆ FOLLOW (B) by splitting after the �rst
B and the constraint FOLLOW (A) ⊆ FOLLOW (B) by �splitting� after
the last B.

We solve the constraints in the following fashion:
We start by assuming empty FOLLOW sets for all nonterminals. We

then handle the constraints of the form FIRST (β) ⊆ FOLLOW (N): We
compute FIRST(β) and add this to FOLLOW(N). Thereafter, we han-
dle the second type of constraints: For each constraint FOLLOW(M) ⊆
FOLLOW (N), we add FOLLOW(M) to
FOLLOW(N). We iterate these last steps until no further changes hap-
pen.

The steps taken to calculate the follow sets of a grammar are, hence:

3.10. FOLLOW 79

1. Add a new nonterminal S′ → S$, where S is the start symbol
for the original grammar. S′ is the start symbol for the extended
grammar.

2. For each nonterminal N , locate all occurrences of N on the right-
hand sides of productions. For each occurrence do the following:

2.1 Let β be the rest of the right-hand side after the occurrence
of N . Note that β may be empty.

2.2 Let m = FIRST(β). Add the constraint m ⊆ FOLLOW(N)
to the set of constraints. If β is empty, you can omit the
constraint, as it doesn't add anything.

2.3 If Nullable(β), �nd the nonterminal M at the left-hand side
of the production and add the constraint FOLLOW(M) ⊆
FOLLOW(N). If M = N , you can omit the constraint, as it
doesn't add anything. Note that if β is empty, Nullable(β) is
true.

3. Solve the constraints using the following steps:

3.1 Start with empty sets for FOLLOW(N) for all nonterminals
N (not including S′).

3.2 For each constraint of the form m ⊆ FOLLOW(N) con-
structed in step 2.1, add the contents of m to FOLLOW(N).

3.3 Iterating until a �xed-point is reached, for each constraint of
the form FOLLOW(M) ⊆ FOLLOW(N), add the contents of
FOLLOW(M) to FOLLOW(N).

We can take grammar 3.4 as an example of this. We �rst add the
production

T ′ → T$

to the grammar to handle end-of-text conditions. The table below shows
the constraints generated by each production

Production Constraints
T ′ → T$ {$} ⊆ FOLLOW(T)
T → R FOLLOW(T) ⊆ FOLLOW(R)
T → aTc {c} ⊆ FOLLOW(T)
R →
R → RbR {b} ⊆ FOLLOW(R), FOLLOW(R) ⊆ FOLLOW(R)

80 CHAPTER 3. SYNTAX ANALYSIS

In the above table, we have already calculated the required FIRST sets,
so they are shown as explicit lists of terminals. To initialise the FOL-
LOW sets, we use the constraints that involve these FIRST sets:

FOLLOW(T) = {$, c}
FOLLOW(R) = {b}

and then iterate calculation of the subset constraints. The only nontriv-
ial constraint is FOLLOW(T) ⊆ FOLLOW(R), so we get

FOLLOW(T) = {$, c}
FOLLOW(R) = {$, c, b}

Which is the �nal values for the FOLLOW sets.
If we return to the question of predictive parsing of grammar 3.4, we

see that for the nonterminal R we should choose the empty production
on the symbols in FOLLOW(R), i.e., {$, c, b} and choose the non-empty
production on the symbols in FIRST(RbR), i.e., {b}. Since these sets
overlap (on the symbol b), we can not uniquely choose a production
for R based on the next input symbol. Hence, the revised construction
of predictive parsers (see below) will reject this grammar as possibly
ambiguous.

3.11 LL(1) parsing

We have, in the previous sections, looked at how we can choose produc-
tions based on FIRST and FOLLOW sets, i.e. using the rule that we
choose a production N → α on input symbol c if

• c ∈ FIRST (α), or

• Nullable(α) and c ∈ FOLLOW (N).

If we can always choose a production uniquely by using these rules, this
is called called LL(1) parsing � the �rst L indicates the reading direction
(left-to-right), the second L indicates the derivation order (left) and the
1 indicates that there is a one-symbol lookahead. A grammar that can
be parsed using LL(1) parsing is called an LL(1) grammar.

In the rest of this section, we shall see how we can implement LL(1)
parsers as programs. We look at two implementation methods: Recur-
sive descent, where grammar structure is directly translated into the
structure of a program, and a table-based approach that encodes the
decision process in a table.

3.11. LL(1) PARSING 81

3.11.1 Recursive descent

As the name indicates, recursive descent uses recursive functions to im-
plement predictive parsing. The central idea is that each nonterminal in
the grammar is implemented by a function in the program.

Each such function looks at the next input symbol in order to choose
one of the productions for the nonterminal, using the criteria shown
in the beginning of section 3.11. The right-hand side of the chosen
production is then used for parsing in the following way:

A terminal on the right-hand side is matched against the next input
symbol. If they match, we move on to the following input symbol and
the next symbol on the right hand side, otherwise an error is reported.

A nonterminal on the right-hand side is handled by calling the corre-
sponding function and, after this call returns, continuing with the next
symbol on the right-hand side.

When there are no more symbols on the right-hand side, the function
returns.

As an example, �gure 3.16 shows pseudo-code for a recursive de-
scent parser for grammar 3.9. We have constructed this program by the
following process:

We have �rst added a production T ′ → T$ and calculated FIRST
and FOLLOW for all productions.

T ′ has only one production, so the choice is trivial. However, we
have added a check on the next input symbol anyway, so we can report
an error if it isn't in FIRST(T ′). This is shown in the function parseT'.

For the parseT function, we look at the productions for T . As
FIRST(R) = {b}, the production T → R is chosen on the symbol b.
Since R is also Nullable, we must choose this production also on sym-
bols in FOLLOW(T), i.e., c or $. FIRST(aTc) = {a}, so we select
T → aTc on an a. On all other symbols we report an error.

For parseR, we must choose the empty production on symbols in
FOLLOW(R) (c or $). The production R → bR is chosen on input b.
Again, all other symbols produce an error.

The function match takes as argument a symbol, which it tests for
equality with the next input symbol. If they are equal, the following
symbol is read into the variable next. We assume next is initialised to
the �rst input symbol before parseT' is called.

The program in �gure 3.16 only checks if the input is valid. It can
easily be extended to construct a syntax tree by letting the parse func-
tions return the sub-trees for the parts of input that they parse.

82 CHAPTER 3. SYNTAX ANALYSIS

function parseT'() =

if next = 'a' or next = 'b' or next = '$' then

parseT() ; match('$')

else reportError()

function parseT() =

if next = 'b' or next = 'c' or next = '$' then

parseR()

else if next = 'a' then

match('a') ; parseT() ; match('c')

else reportError()

function parseR() =

if next = 'c' or next = '$' then

(* do nothing *)

else if next = 'b' then

match('b') ; parseR()

else reportError()

Figure 3.16: Recursive descent parser for grammar 3.9

3.11.2 Table-driven LL(1) parsing

In table-driven LL(1) parsing, we encode the selection of productions
into a table instead of in the program text. A simple non-recursive
program uses this table and a stack to perform the parsing.

The table is cross-indexed by nonterminal and terminal and contains
for each such pair the production (if any) that is chosen for that non-
terminal when that terminal is the next input symbol. This decision is
made just as for recursive descent parsing: The production N → α is in
the table at (N ,a) if a is in FIRST(α) or if both Nullable(α) and a is in
FOLLOW(N).

For grammar 3.9 we get the table shown in �gure 3.17.

The program that uses this table is shown in �gure 3.18. It uses a
stack, which at any time (read from top to bottom) contains the part
of the current derivation that has not yet been matched to the input.
When this eventually becomes empty, the parse is �nished. If the stack
is non-empty, and the top of the stack contains a terminal, that terminal
is matched against the input and popped from the stack. Otherwise, the
top of the stack must be a nonterminal, which we cross-index in the table

3.11. LL(1) PARSING 83

a b c $
T ′ T ′ → T$ T ′ → T$ T ′ → T$
T T → aTc T → R T → R T → R
R R → bR R → R →

Figure 3.17: LL(1) table for grammar 3.9

stack := empty ; push(T',stack)

while stack <> empty do

if top(stack) is a terminal then

match(top(stack)) ; pop(stack)

else if table(top(stack),next) = empty then

reportError

else

rhs := rightHandSide(table(top(stack),next)) ;

pop(stack) ;

pushList(rhs,stack)

Figure 3.18: Program for table-driven LL(1) parsing

with the next input symbol. If the table-entry is empty, we report an
error. If not, we pop the nonterminal from the stack and replace this
by the right-hand side of the production in the table entry. The list of
symbols on the right-hand side are pushed such that the �rst of these
will be at the top of the stack.

As an example, �gure 3.19 shows the input and stack at each step
during parsing of the string aabbbcc$ using the table in �gure 3.17. The
top of the stack is to the left.

The program in �gure 3.18, like the one in �gure 3.16, only checks if
the input is valid. It, too, can be extended to build a syntax tree. This
can be done by letting each nonterminal on the stack point to its node
in the partially built syntax tree. When the nonterminal is replaced by
one of its right-hand sides, nodes for the symbols on the right-hand side
are added as children to the node.

3.11.3 Con�icts

When a symbol a allows several choices of production for nonterminal
N we say that there is a con�ict on that symbol for that nonterminal.

84 CHAPTER 3. SYNTAX ANALYSIS

input stack
aabbbcc$ T ′

aabbbcc$ T$
aabbbcc$ aTc$
abbbcc$ Tc$
abbbcc$ aTcc$
bbbcc$ Tcc$
bbbcc$ Rcc$
bbbcc$ bRcc$
bbcc$ Rcc$
bbcc$ bRcc$
bcc$ Rcc$
bcc$ bRcc$
cc$ Rcc$
cc$ cc$
c$ c$
$ $

Figure 3.19: Input and stack during table-driven LL(1) parsing

3.12. REWRITING A GRAMMAR FOR LL(1) PARSING 85

Con�icts may be caused by ambiguous grammars (indeed all ambiguous
grammars will cause con�icts) but there are also unambiguous grammars
that cause con�icts. An example of this is the unambiguous expression
grammar (grammar 3.11). We will in the next section see how we can
rewrite this grammar to avoid con�icts, but it must be noted that this
is not always possible: There are languages for which there exist unam-
biguous context-free grammars but where no grammar for the language
generates a con�ict-free LL(1) table. Such languages are said to be
non-LL(1). It is, however, important to note the di�erence between a
non-LL(1) language and a non-LL(1) grammar: A language may well be
LL(1) even though the grammar used to describe it isn't.

3.12 Rewriting a grammar for LL(1) parsing

In this section we will look at methods for rewriting grammars such that
they are more palatable for LL(1) parsing. In particular, we will look at
elimination of left-recursion and at left factorisation.

It must, however, be noted that not all grammars can be rewritten
to allow LL(1) parsing. In these cases stronger parsing techniques must
be used.

3.12.1 Eliminating left-recursion

As mentioned above, the unambiguous expression grammar (grammar 3.11)
is not LL(1). The reason is that all productions in Exp and Exp2 have
the same FIRST sets. Overlap like this will always happen when there
are left-recursive productions in the grammar, as the FIRST set of a left-
recursive production will include the FIRST set of the nonterminal itself
and hence be a superset of the FIRST sets of all the other productions
for that nonterminal. To solve this problem, we must avoid left-recursion
in the grammar. We start by looking at direct left-recursion.

When we have a nonterminal with some left-recursive and some non-
left-recursive productions, i.e.,

N → Nα1
...

N → Nαm

N → β1
...

N → βn

86 CHAPTER 3. SYNTAX ANALYSIS

where the βi do not start with N , we observe that this is equivalent to
the regular expression (β1 | . . . |βn)(α1 | . . . |αm)∗. We can generate the
same set of strings by the grammar

N → β1N
′

...
N → βnN ′

N ′ → α1N
′

...
N ′ → αmN ′

N ′ →

where N ′ is a new nonterminal.
Note that, since the βi do not start with N , there is no direct left-

recursion in this grammar. There may, however, still be instances of
indirect left-recursion. We will brie�y look at indirect left-recursion in
section 3.12.1.

Rewriting the grammar like above will change the syntax trees that
are built from the strings that are parsed. Hence, after parsing, the syn-
tax tree must be re-structured to obtain the structure that the original
grammar describe. We will return to this in section 3.16.

As an example of left-recursion removal, we take the unambiguous
expression grammar 3.11. This has left recursion in both Exp and Exp2,
so we apply the transformation to both of these to obtain grammar 3.20.
The resulting grammar 3.20 is now LL(1).

Indirect left-recursion

The transformation shown in section 3.12.1 only serves in the simple
case where there is no indirect left-recursion. Indirect left-recursion can
have several faces:

1. There are productions

N1 → N2α1

N2 → N3α2
...

Nk−1 → Nkαk−1

Nk → N1αk

3.12. REWRITING A GRAMMAR FOR LL(1) PARSING 87

Exp → Exp2 Exp′

Exp′ → + Exp2 Exp′

Exp′ → - Exp2 Exp′

Exp′ →
Exp2 → Exp3 Exp2′

Exp2′ → * Exp3 Exp2′

Exp2′ → / Exp3 Exp2′

Exp2′ →
Exp3 → num
Exp3 → (Exp)

Grammar 3.20: Removing left-recursion from grammar 3.11

2. There is a production N → αNβ where α is Nullable.

or any combination of the two. More precisely, a grammar is (directly
or indirectly) left-recursive if there is a non-empty derivation sequence
N ⇒ Nα, i.e., if a nonterminal derives a sequence of grammar symbols
that start by that same nonterminal. If there is indirect left-recursion,
we must �rst rewrite the grammar to make the left-recursion direct and
then use the transformation above.

Rewriting a grammar to turn indirect left-recursion into direct left-
recursion can be done systematically, but the process is a bit compli-
cated. We will not go into this here, as in practise most cases of left-
recursion are direct left-recursion. Details can be found in [4].

3.12.2 Left-factorisation

If two productions for the same nonterminal begin with the same se-
quence of symbols, they obviously have overlapping FIRST sets. As an
example, in grammar 3.3 the two productions for if have overlapping
pre�xes. We rewrite this in such a way that the overlapping productions
are made into a single production that contains the common pre�x of
the productions and uses a new auxiliary nonterminal for the di�erent
su�xes. Seeleft-recursion-elimination grammar 3.21. In this grammar3,
we can uniquely choose one of the productions for Stat based on one
input token.

3We have omitted the production for semicolon, as that would only muddle the
issue by introducing more ambiguity.

88 CHAPTER 3. SYNTAX ANALYSIS

Stat → id := Exp
Stat → if Exp then Stat Elsepart

Elsepart → else Stat
Elsepart →

Grammar 3.21: Left-factorised grammar for conditionals

For most grammars, combining productions with common pre�x will
solve the problem. However, in this particular example the grammar still
isn't LL(1): We can't uniquely choose a production for the auxiliary
nonterminal Elsepart, since else is in FOLLOW(Elsepart) as well as in
the FIRST set of the �rst production for Elsepart. This shouldn't be a
surprise to us, since, after all, the grammar is ambiguous and ambigu-
ous grammars can't be LL(1). The equivalent unambiguous grammar
(grammar 3.13) can't easily be rewritten to a form suitable for LL(1), so
in practice grammar 3.21 is used anyway and the con�ict is handled by
choosing the non-empty production for Elsepart whenever the symbol
else is encountered, as this gives the desired behaviour of letting an
else match the nearest if. Very few LL(1) con�icts caused by ambi-
guity can be removed in this way, however, without also changing the
language recognized by the grammar. For example, operator precedence
ambiguity can not be resolved by deleting con�icting entries in the LL(1)
table.

3.12.3 Construction of LL(1) parsers summarized

1. Eliminate ambiguity

2. Eliminate left-recursion

3. Perform left factorisation where required

4. Add an extra start production S′ → S$ to the grammar.

5. Calculate FIRST for every production and FOLLOW for every
nonterminal.

6. For nonterminal N and input symbol c, choose production N → α
when:

3.13. SLR PARSING 89

• c ∈ FIRST (α), or
• Nullable(α) and c ∈ FOLLOW (N).

This choice is encoded either in a table or a recursive-descent pro-
gram.

3.13 SLR parsing

A problem with LL(1) parsing is that most grammars need extensive
rewriting to get them into a form that allows unique choice of production.
Even though this rewriting can, to a large extent, be automated, there
are still a large number of grammars that can not be automatically
transformed into LL(1) grammars.

A class of bottom-up methods for parsing called LR parsers exist
which accept a much larger class of grammars (though still not all gram-
mars). The main advantage of LR parsing is that less rewriting is re-
quired to get a grammar in acceptable form, but there are also languages
for which there exist LR-acceptable grammars but no LL(1) grammars.
Furthermore, as we shall see in section 3.15, LR parsers allow external
declaration of operator precedences for resolving ambiguity instead of
requiring the grammar itself to be unambiguous.

We will look at a simple form of LR-parsing called SLR parsing.
While most parser generators use a somewhat more complex method
called LALR(1) parsing, we limit the discussion to SLR for the following
reasons:

• It is simpler.

• In practice, LALR(1) handles few grammars that are not also han-
dled by SLR.

• When a grammar is in the SLR class, the parse-tables produced
by SLR are identical to those produced by LALR(1).

• Understanding of SLR principles is su�cient to know how a gram-
mar should be rewritten when a LALR(1) parser generator rejects
it.

The letters �SLR� stand for �Simple�, �Left� and �Right�. �Left� indicates
that the input is read from left to right and the �Right� indicates that a
right-derivation is built.

LR parsers are table-driven bottom-up parsers and use two kinds of
�actions� involving the input stream and a stack:

90 CHAPTER 3. SYNTAX ANALYSIS

shift: A symbol is read from the input and pushed on the stack.

reduce: On the stack, a number of symbols that are identical to the
right-hand side of a production are replaced by the left-hand side
of that production. Contrary to LL parsers, the stack holds the
right-hand-side symbols such that the last symbol on the right-
hand side is at the top of the stack.

When all of the input is read, the stack will have a single element, which
will be the start symbol of the grammar.

LR parsers are also called shift-reduce parsers. As with LL(1), our
aim is to make the choice of action depend only on the next input symbol
and the symbol on top of the stack. To achieve this, we construct a DFA.
Conceptually, this DFA reads the contents of the stack, starting from the
bottom. If the DFA is in an accepting state when it reaches the top of the
stack, it will cause reduction by a production that is determined by the
state and the next input symbol. If the DFA is not in an accepting state,
it will cause a shift. Hence, at every step, the action can be determined
by letting the DFA read the stack from bottom to top.

Letting the DFA read the entire stack at every action is not very
e�cient, so, instead, we keep track of the DFA state every time we push
an element on the stack, storing the state as part of the stack element.

When the DFA has indicated a shift, the course of action is easy: We
get the state from the top of the stack and follow the transition marked
with the next input symbol to �nd the next DFA state.

If the DFA indicated a reduce, we pop the right-hand side of the
production o� the stack. We then read the DFA state from the new
stack top. When we push the nonterminal that is the left-hand side
of the production, we make a transition from this DFA state on the
nonterminal.

With these optimisations, the DFA only has to inspect a terminal or
nonterminal at the time it is pushed on the stack. At all other times, it
just need to read the DFA state that is stored with the stack element.
Hence, we can forget about what the actual symbols are as soon as the
DFA has made the transition. There is, thus, no reason to keep the
symbols on the stack, so we let a stack element just contain the DFA
state. We still use the DFA to determine the next action, but it now
only needs to look at the current state (stored at the top of the stack)
and the next input symbol (at a shift action) or nonterminal (at a reduce
action).

We represent the DFA as a table, where we cross-index a DFA state

3.14. CONSTRUCTING SLR PARSE TABLES 91

with a symbol (terminal or nonterminal) and �nd one of the following
actions:

shift n: Read next input symbol, push state n on the stack.
go n: Push state n on the stack.

reduce p: Reduce with the production numbered p.
accept: Parsing has completed successfully.
error: A syntax error has been detected.

Note that the current state is always found at the top of the stack.
Shift and reduce actions are found when a state is cross-indexed with
a terminal symbol. Go actions are found when a state is cross-indexed
with a nonterminal. Go actions are only used immediately after a reduce,
but we can't put them next to the reduce actions in the table, as the
destination state of a go depends on the state on top of the stack after
the right-hand side of the reduced production is popped o�: A reduce
in the current state is immediately followed by a go in the state that is
found when the stack is popped.

An example SLR table is shown in �gure 3.22. The table has been
produced from grammar 3.9 by the method shown below in section 3.14.
The actions have been abbreviated to their �rst letters and error is shown
as a blank entry.

The algorithm for parsing a string using the table is shown in �g-
ure 3.23. As written, the algorithm just determines if a string is in the
language generated by the grammar. It can, however, easily be extended
to build a syntax tree: Each stack element holds (in addition to the state
number) a portion of a syntax tree. When doing a reduce action, a new
(partial) syntax tree is built by using the nonterminal from the reduced
production as root and the syntax trees attached to the popped-o� stack
elements as children. The new tree is then attached to the stack element
that is pushed.

Figure 3.24 shows an example of parsing the string aabbbcc using
the table in �gure 3.22. The stack grows from left to right.

3.14 Constructing SLR parse tables

An SLR parse table has as its core a DFA. Constructing this DFA from
the grammar is not much di�erent from constructing a DFA from a
regular expression as shown in chapter 2: We �rst construct an NFA
using techniques similar to those in section 2.4 and then convert this
into a DFA using the construction shown in section 2.5.

92 CHAPTER 3. SYNTAX ANALYSIS

a b c $ T R
0 s3 s4 r3 r3 g1 g2
1 a
2 r1 r1
3 s3 s4 r3 r3 g5 g2
4 s4 r3 r3 g6
5 s7
6 r4 r4
7 r2 r2

Figure 3.22: SLR table for grammar 3.9

stack := empty ; push(0,stack) ; read(next)

loop

case table[top(stack),next] of

shift s: push(s,stack) ;

read(next)

reduce p: n := the left-hand side of production p ;

r := the number of symbols

on the right-hand side of p ;

pop r elements from the stack ;

push(s,stack) where table[top(stack),n] = go s

accept: terminate with success

error: reportError

endloop

Figure 3.23: Algorithm for SLR parsing

3.14. CONSTRUCTING SLR PARSE TABLES 93

input stack action
aabbbcc$ 0 s3
abbbcc$ 03 s3
bbbcc$ 033 s4
bbcc$ 0334 s4
bcc$ 03344 s4
cc$ 033444 r3 (R →) ; g6
cc$ 0334446 r4 (R → bR) ; g6
cc$ 033446 r4 (R → bR) ; g6
cc$ 03346 r4 (R → bR) ; g2
cc$ 0332 r1 (T → R) ; g5
cc$ 0335 s7
c$ 03357 r2 (T → aTc) ; g5
c$ 035 s7
$ 0357 r2 (T → aTc) ; g1
$ 01 accept

Figure 3.24: Example SLR parsing

0: T ′ → T
1: T → R
2: T → aTc
3: R →
4: R → bR

Grammar 3.25: Example grammar for SLR-table construction

However, before we do this, we extend the grammar with a new
starting production. Doing this to grammar 3.9 yields grammar 3.25.

The next step is to make an NFA for each production. This is done
exactly like in section 2.4, treating both terminals and nonterminals as
alphabet symbols. The accepting state of each NFA is labelled with
the number of the corresponding production. The result is shown in
�gure 3.26. Note that we have used the optimised construction for ε
(the empty production) as shown in �gure 2.6.

The NFAs in �gure 3.26 make transitions both on terminals and non-
terminals. Transitions by terminal corresponds to shift actions and tran-
sitions on nonterminals correspond to go actions. A go action happens

94 CHAPTER 3. SYNTAX ANALYSIS

Production NFA

T ′ → T
-����

A -T ����nB 0

T → R
-����

C -R ����nD 1

T → aTc
-����

E -a ����
F -T ����

G -c ����nH 2

R → -����nI 3

R → bR
-����

J -b ����
K -R ����nL 4

Figure 3.26: NFAs for the productions in grammar 3.25

state epsilon-transitions
A C, E
C I, J
F C, E
K I, J

Figure 3.27: Epsilon-transitions added to �gure 3.26

after a reduction, whereby some elements of the stack (corresponding to
the right-hand side of a production) are replaced by a nonterminal (cor-
responding to the left-hand side of that production). However, before
we can do this, the symbols that form the right-hand side must be on
the stack.

To achieve this we must, whenever a transition by a nonterminal is
possible, also allow transitions on the symbols on the right-hand side of
a production for that nonterminal so these eventually can be reduced to
the nonterminal. We do this by adding epsilon-transitions to the NFAs
in �gure 3.26: Whenever there is a transition from state s to state t on
a nonterminal N , we add epsilon-transitions from s to the initial states
of all the NFAs for productions with N on the left-hand side. Adding
these graphically to �gure 3.26 would make a very cluttered picture, so
instead we simply note the transitions in a table, shown in �gure 3.27.

Together with these epsilon-transitions, the NFAs in �gure 3.26 form

3.14. CONSTRUCTING SLR PARSE TABLES 95

DFA NFA Transitions
state states a b c T R
0 A, C, E, I, J s3 s4 g1 g2
1 B
2 D
3 F, C, E, I, J s3 s4 g5 g2
4 K, I, J s4 g6
5 G s7
6 L
7 H

Figure 3.28: SLR DFA for grammar 3.9

a single, combined NFA. This NFA has the starting state A (the start-
ing state of the NFA for the added start production) and an accepting
state for each production in the grammar. We must now convert this
NFA into a DFA using the subset construction shown in section 2.5.
Instead of showing the resulting DFA graphically, we construct a table
where transitions on terminals are shown as shift actions and transitions
on nonterminals as go actions. This will make the table look similar
to �gure 3.22, except that no reduce or accept actions are present yet.
Figure 3.28 shows the DFA constructed from the NFA made by adding
epsilon-transitions in 3.27 to �gure 3.26. The set of NFA states that
forms each DFA state is shown in the second column of the table in �g-
ure 3.28. We will need these below for adding reduce and accept actions,
but once this is done we will not need then anymore, and we can remove
then from the �nal table.

To add reduce and accept actions, we �rst need to compute the FOL-
LOW sets for each nonterminal, as described in section 3.10. For pur-
pose of calculating FOLLOW, we add yet another extra start production:
T ′′ → T ′$, to handle end-of-text conditions as described in section 3.10.
This gives us the following result:

FOLLOW(T ′) = {$}
FOLLOW(T) = {c, $}
FOLLOW(R) = {c, $}

We then add reduce actions by the following rule: If a DFA state s
contains the accepting NFA state for a production p : N → α, we
add reduce p as action to s on all symbols in FOLLOW(N). Reduc-

96 CHAPTER 3. SYNTAX ANALYSIS

tion on production 0 (the extra start production that was added before
constructing the NFA) is written as accept.

In �gure 3.28, state 0 contains NFA state I, which accepts production
3. Hence, we add r3 as actions at the symbols c and $ (as these are in
FOLLOW(R)). State 1 contains NFA state B, which accepts production
0. We add this at the symbol $ (FOLLOW(T ′)). As noted above, this is
written as accept (abbreviated to �a�). In the same way, we add reduce
actions to state 3, 4, 6 and 7. The result is shown in �gure 3.22.

Figure 3.29 summarises the SLR construction.

1. Add the production S′ → S, where S is the start symbol of the
grammar.

2. Make an NFA for the right-hand side of each production.

3. For each state s that has an outgoing transition on a nonterminal
N , add epsilon-transitions from s to the starting states of the NFAs
for the right-hand sides of the productions for N .

4. Convert the combined NFA to a DFA. Use the starting state of
the NFA for the production added in step 1 as the starting state
for the combined NFA.

5. Build a table cross-indexed by the DFA states and grammar sym-
bols (terminals including $ and nonterminals). Add shift actions
at transitions on terminals and go actions on transitions on non-
terminals.

6. Calculate FOLLOW for each nonterminal. For this purpose, we
add one more start production: S′′ → S′$.

7. When a DFA state contains an NFA state that accepts the right-
hand side of the production numbered p, add reduce p at all sym-
bols in FOLLOW(N), where N is the nonterminal on the left of
production p. If production p is the production added in step 1,
the action is accept instead of reduce p.

Figure 3.29: Summary of SLR parse-table construction

3.15. USING PRECEDENCE RULES IN LR PARSE TABLES 97

3.14.1 Con�icts in SLR parse-tables

When reduce actions are added to SLR parse-tables, we might add one
to a place where there is already a shift action, or we may add reduce
actions for several di�erent productions to the same place. When either
of this happens, we no longer have a unique choice of action, i.e., we
have a con�ict. The �rst situation is called a shift-reduce con�ict and
the other case a reduce-reduce con�ict. Both may occur in the same
place.

Con�icts are often caused by ambiguous grammars, but (as is the
case for LL-parsers) even some non-ambiguous grammars may generate
con�icts. If a con�ict is caused by an ambiguous grammar, it is usually
(but not always) possible to �nd an equivalent unambiguous grammar.
Methods for eliminating ambiguity were discussed in sections 3.4 and 3.5.
Alternatively, operator precedence declarations may be used to disam-
biguate an ambiguous grammar, as we shall see in section 3.15.

But even unambiguous grammars may in some cases generate con-
�icts in SLR-tables. In some cases, it is still possible to rewrite the
grammar to get around the problem, but in a few cases the language
simply isn't SLR. Rewriting an unambiguous grammar to eliminate con-
�icts is somewhat of an art. Investigation of the NFA states that form
the problematic DFA state will often help identifying the exact nature
of the problem, which is the �rst step towards solving it. Sometimes,
changing a production from left-recursive to right-recursive may help,
even though left-recursion in general isn't a problem for SLR-parsers, as
it is for LL(1)-parsers.

3.15 Using precedence rules in LR parse tables

We saw in section 3.12.2, that the con�ict arising from the dangling-
else ambiguity could be removed by removing one of the entries in the
LL(1) parse table. Resolving ambiguity by deleting con�icting actions
can also be done in SLR-tables. In general, there are more cases where
this can be done successfully for SLR-parsers than for LL(1)-parsers. In
particular, ambiguity in expression grammars like grammar 3.2 can be
eliminated this way in an SLR table, but not in an LL(1) table. Most
LR-parser generators allow declarations of precedence and associativity
for tokens used as in�x-operators. These declarations are then used to
eliminate con�icts in the parse tables.

There are several advantages to this approach:

98 CHAPTER 3. SYNTAX ANALYSIS

• Ambiguous expression grammars are more compact and easier to
read than unambiguous grammars in the style of section 3.4.1.

• The parse tables constructed from ambiguous grammars are often
smaller than tables produced from equivalent unambiguous gram-
mars.

• Parsing using ambiguous grammars is (slightly) faster, as fewer
reductions of the form Exp2 → Exp3 etc. are required.

Using precedence rules to eliminate con�icts is very simple. Grammar 3.2
will generate several con�icts:

1) A con�ict between shifting on + and reducing by the production
Exp → Exp +Exp.

2) A con�ict between shifting on + and reducing by the production
Exp → Exp *Exp.

3) A con�ict between shifting on * and reducing by the production
Exp → Exp +Exp.

4) A con�ict between shifting on * and reducing by the production
Exp → Exp *Exp.

And several more of similar nature involving - and /, for a total of 16
con�icts. Let us take each of the four con�icts above in turn and see
how precedence rules can be used to eliminate them.

1) This con�ict arises from expressions like a+b+c. After having read
a+b, the next input symbol is a +. We can now either choose to
reduce a+b, grouping around the �rst addition before the second,
or shift on the plus, which will later lead to b+c being reduced
and hence grouping around the second addition before the �rst.
Since + is left-associative, we prefer the �rst of these options and
hence eliminate the shift-action from the table and keep the reduce-
action.

2) The o�ending expressions here have the form a*b+c. Since we want
multiplication to bind stronger than addition, we, again, prefer
reduction over shifting.

3) In expressions of the form a+b*c, we, as before, want multiplication
to group stronger, so we do a shift to avoid grouping around the +
operator and, hence, eliminate the reduce-action from the table.

3.15. USING PRECEDENCE RULES IN LR PARSE TABLES 99

4) This case is identical to case 1, where a left-associative operator
con�icts with itself and is likewise handled by eliminating the shift.

In general, elimination of con�icts by operator precedence declarations
can be summarised into the following rules:

a) If the con�ict is between two operators of di�erent priority, elim-
inate the action with the lowest priority operator in favour of the
action with the highest priority. The operator associated with a
reduce-action is the operator used in the production that is re-
duced.

b) If the con�ict is between operators of the same priority, the asso-
ciativity (which must be the same, as noted in section 3.4.1) of the
operators is used: If the operators are left-associative, the shift-
action is eliminated and the reduce-action retained. If the opera-
tors are right-associative, the reduce-action is eliminated and the
shift-action retained. If the operators are non-associative, both
actions are eliminated.

c) If there are several operators with declared precedence in the pro-
duction that is used in a reduce-action, the last of these is used to
determine the precedence of the reduce-action.4

Pre�x and post�x operators can be handled similarly. Associativity only
applies to in�x operators, so only the precedence of pre�x and post�x
operators matters.

Note that only shift-reduce con�icts are eliminated by the above
rules. Some parser generators allow also reduce-reduce con�icts to be
eliminated by precedence rules (in which case the production with the
highest-precedence operator is preferred), but this is not as obviously
useful as the above.

The dangling-else ambiguity (section 3.5) can also be eliminated us-
ing precedence rules: Giving else a higher precedence than then or giv-
ing them the same precedence and making them right-associative will
handle the problem, as either of these will make the parser shift on else

instead of reducing Stat → if Exp then Stat when this is followed by
else.

Not all con�icts should be eliminated by precedence rules. Excessive
use of precedence rules may cause the parser to accept only a subset

4Using several operators with declared priorities in the same production should
be done with care.

100 CHAPTER 3. SYNTAX ANALYSIS

of the intended language (i.e., if a necessary action is eliminated by a
precedence rule). So, unless you know what you are doing, you should
limit the use of precedence declarations to operators in expressions.

3.16 Using LR-parser generators

Most LR-parser generators use an extended version of the SLR con-
struction called LALR(1). In practice, however, there is little di�erence
between these, so a LALR(1) parser generator can be used with knowl-
edge of SLR only.

Most LR-parser generators organise their input in several sections:

• Declarations of the terminals and nonterminals used.

• Declaration of the start symbol of the grammar.

• Declarations of operator precedence.

• The productions of the grammar.

• Declaration of various auxiliary functions and data-types used in
the actions (see below).

3.16.1 Declarations and actions

Each nonterminal and terminal is declared and associated with a data-
type. For a terminal, the data-type is used to hold the values that are
associated with the tokens that come from the lexer, e.g., the values of
numbers or names of identi�ers. For a nonterminal, the type is used
for the values that are built for the nonterminals during parsing (at
reduce-actions).

While, conceptually, parsing a string produces a syntax tree for that
string, parser generators usually allow more control over what is actually
produced. This is done by assigning an action to each production. The
action is a piece of program text that is used to calculate the value of
a reduced production by using the values associated with the symbols
on the right-hand side. For example, by putting appropriate actions on
each production, the numerical value of an expression may be calculated
as the result of parsing the expression. Indeed, compilers can be made
such that the value produced during parsing is the compiled code of a
program. For all but the simplest compilers it is, however, better to
build some kind of syntax representation during parsing and then later
operate on this representation.

3.16. USING LR-PARSER GENERATORS 101

3.16.2 Abstract syntax

The syntax trees described in section 3.3.1 are not always optimally
suitable for compilation. They contain a lot of redundant information:
Parentheses, keywords used for grouping purposes only, and so on. They
also re�ect structures in the grammar that are only introduced to elim-
inate ambiguity or to get the grammar accepted by a parser generator
(such as left-factorisation or elimination of left-recursion). Hence, ab-
stract syntax is commonly used.

Abstract syntax keeps the essence of the structure of the text but
omits the irrelevant details. An abstract syntax tree is a tree structure
where each node corresponds to one or more nodes in the (concrete)
syntax tree. For example, the concrete syntax tree shown in �gure 3.12
may be represented by the following abstract syntax tree:

PlusExp
�

�
@
@

NumExp(2) MulExp
�

�
@
@

NumExp(3) NumExp(4)

Here the names PlusExp, MulExp and NumExp may be constructors in
a data-type or they may be elements from an enumerated type used as
tags in a union-type. The names indicate which production is chosen,
so there is no need to keep the subtrees that are implied by the choice
of production, such as the subtree from �gure refexpression-tree2 that
holds the symbol +. Likewise, the sequence of nodes Exp, Exp2, Exp3,
2 at the left of �gure refexpression-tree2 are combined to a single node
NumExp(2) that includes both the choice of productions for Exp, Exp2
and Exp3 and the value of the terminal node.

A compiler designer has much freedom in the choice of abstract syn-
tax. Some use abstract syntax that retain alls of the structure of the
concrete syntax trees plus additional positioning information used for
error-reporting. Others prefer abstract syntax that contains only the
information necessary for compilation, skipping parenthesis and other
(for this purpose) irrelevant structure.

Exactly how the abstract syntax tree is represented and built de-
pends on the parser generator used. Normally, the action assigned to a
production can access the values of the terminals and nonterminals on
the right-hand side of a production through specially named variables

102 CHAPTER 3. SYNTAX ANALYSIS

(often called $1, $2, etc.) and produces the value for the node corre-
sponding to the left-hand-side either by assigning it to a special variable
($0) or letting it be the return value of the action.

The data structures used for building abstract syntax trees depend
on the language. Most statically typed functional languages support
tree-structured datatypes with named constructors. In such languages,
it is natural to represent abstract syntax by one datatype per syntactic
category (e.g., Exp above) and one constructor for each instance of the
syntactic category (e.g., PlusExp, NumExp and MulExp above). In Pas-
cal, each syntactic category can be represented by a variant record type
and each instance as a variant of that. In C, a syntactic category can be
represented by a union of structs, each struct representing an instance
of the syntactic category and the union covering all possible instances.
In object-oriented languages such as Java, a syntactic category can be
represented as an abstract class or interface where each instance in a
syntactic category is a concrete class that implements the abstract class
or interface.

In most cases, it is fairly simple to build abstract syntax using the
actions for the productions in the grammar. It becomes complex only
when the abstract syntax tree must have a structure that di�ers non-
trivially from the concrete syntax tree.

One example of this is if left-recursion has been eliminated for the
purpose of making an LL(1) parser. The preferred abstract syntax tree
will in most cases be similar to the concrete syntax tree of the original
left-recursive grammar rather than that of the transformed grammar.
As an example, the left-recursive grammar

E → E + num
E → num

gets transformed by left-recursion elimination into

E → numE′

E′ → +numE′

E′ →

Which yields a completely di�erent syntax tree. We can use the actions
assigned to the productions in the transformed grammar to build an
abstract syntax tree that re�ects the structure in the original grammar.

In the transformed grammar, E′ should return an abstract syntax
tree with a hole. The intention is that this hole will eventually be �lled
by another abstract syntax tree:

3.16. USING LR-PARSER GENERATORS 103

• The second production for E′ returns just a hole.

• In the �rst production for E′, the + and num terminals are used
to produce a tree for a plus-expression (i.e., a PlusExp node) with
a hole in place of the �rst subtree. This tree is used to �ll the
hole in the tree returned by the recursive use of E′, so the abstract
syntax tree is essentially built outside-in. The result is a new tree
with a hole.

• In the production for E, the hole in the tree returned by the E′

nonterminal is �lled by a NumExp node with the number that is
the value of the num terminal.

The best way of building trees with holes depends on the type of language
used to implement the actions. Let us �rst look at the case where a
functional language is used.

The actions shown below for the original grammar will build an ab-
stract syntax tree similar to the one shown in the beginning of this
section.

E → E + num { PlusExp($1,NumExp($3)) }
E → num { NumExp($1) }

We now want to make actions for the transformed grammar that will
produce the same abstract syntax trees as this will.

In functional languages, an abstract syntax tree with a hole can be
represented by a function. The function takes as argument what should
be put into the hole and returns a syntax tree where the hole is �lled
with this argument. The hole is represented by the argument variable of
the function. We can write this as actions to the transformed grammar:

E → numE′ { $2(NumExp($1)) }
E′ → +numE′ { λx.$3(PlusExp(x,NumExp($2))) }
E′ → { λx.x }

where λx.e is a nameless function that takes x as argument and returns
the value of the expression e. The empty production returns the identity
function, which works like a top-level hole. The non-empty production
for E′ applies the function $3 returned by the E′ on the right-hand side
to a subtree, hence �lling the hole in $3 by this subtree. The subtree
itself has a hole x, which is �lled when applying the function returned
by the right-hand side. The production for E applies the function $2

104 CHAPTER 3. SYNTAX ANALYSIS

returned by E′ to a subtree that has no holes and, hence, returns a tree
with no holes.

In SML, λx.e is written as fn x => e, in Haskell as \x -> e and in
Scheme as (lambda (x) e).

The imperative version of the actions in the original grammar is

E → E + num { $0 = PlusExp($1,NumExp($3)) }
E → num { $0 = NumExp($1) }

In this setting, NumExp and PlusExp aren't constructors but functions
that allocate and build node and return pointers to these. Unnamed
functions of the kind used in the above solution for functional languages
can not be built in most imperative languages, so holes must be an
explicit part of the data-type that is used to represent abstract syntax.
These holes will be overwritten when the values are supplied. E′ will,
hence, return a record holding both an abstract syntax tree (in a �eld
named tree) and a pointer to the hole that should be overwritten (in a
�eld named hole). As actions (using C-style notation), this becomes

E → numE′ { $2->hole = NumExp($1);

$0 = $2.tree }
E′ → +numE′ { $0.hole = makeHole();

$3->hole = PlusExp($0.hole,NumExp($2));

$0.tree = $3.tree }
E′ → { $0.hole = makeHole();

$0.tree = $0.hole }

This may look bad, but when using LR-parser generators, left-recursion
removal is rarely needed, and parser generators based on LL(1) often do
left-recursion removal automatically and transform the actions appro-
priately.

An alternative approach is to let the parser build an intermediate
(semi-abstract) syntax tree from the transformed grammar, and then
let a separate pass restructure the intermediate syntax tree to produce
the intended abstract syntax.

3.16.3 Con�ict handling in parser generators

For all but the simplest grammars, the user of a parser generator should
expect con�icts to be reported when the grammar is �rst presented to
the parser generator. These con�icts can be caused by ambiguity or by

3.16. USING LR-PARSER GENERATORS 105

NFA-state Textual representation
A T' -> . T

B T' -> T .

C T -> . R

D T -> R .

E T -> . aTc

F T -> a . Tc

G T -> aT . c

H T -> aTc .

I R -> .

J R -> . bR

K R -> b . R

L R -> bR .

Figure 3.30: Textual representation of NFA states

the limitations of the parsing method. In any case, the con�icts can nor-
mally be eliminated by rewriting the grammar or by adding precedence
declarations.

Most parser generators can provide information that is useful to lo-
cate where in the grammar the problems are. When a parser generator
reports con�icts, it will tell in which state in the table these occur. This
state can be written out in a (barely) human-readable form as a set of
NFA-states. Since most parser generators rely on pure ASCII, they can
not actually draw the NFAs as diagrams. Instead, they rely on the fact
that each state in the NFA corresponds to a position in a production in
the grammar. If we, for example, look at the NFA states in �gure 3.26,
these would be written as shown in �gure 3.30. Note that a `.' is used
to indicate the position of the state in the production. State 4 of the
table in �gure 3.28 will hence be written as

R -> b . R

R -> .

R -> . bR

The set of NFA states, combined with information about on which sym-
bols a con�ict occurs, can be used to �nd a remedy, e.g. by adding
precedence declarations.

If all e�orts to get a grammar through a parser generator fails, a
practical solution may be to change the grammar so it accepts a larger

106 CHAPTER 3. SYNTAX ANALYSIS

language than the intended language and then post-process the syntax
tree to reject �false positives�. This elimination can be done at the same
time as type-checking (which, too, may reject programs).

Some languages allow programs to declare precedence and associa-
tivity for user-de�ned operators. This can make it di�cult to handle
precedence during parsing, as the precedences are not known when the
parser is generated. A typical solution is to parse all operators using the
same precedence and then restructure the syntax tree afterwards, but
see also exercise 3.20.

3.17 Properties of context-free languages

In section 2.10, we described some properties of regular languages. Con-
text-free languages share some, but not all, of these.

For regular languages, deterministic (�nite) automata cover exactly
the same class of languages as nondeterministic automata. This is not
the case for context-free languages: Nondeterministic stack automata
do indeed cover all context-free languages, but deterministic stack au-
tomata cover only a strict subset. The subset of context-free languages
that can be recognised by deterministic stack automata are called de-
terministic context-free languages. Deterministic context-free languages
can be recognised by LR parsers.

We have noted that the basic limitation of regular languages is �nite-
ness: A �nite automaton can not count unboundedly and hence can not
keep track of matching parentheses or similar properties. Context-free
languages are capable of such counting, essentially using the stack for
this purpose. Even so, there are limitations: A context-free language
can only keep count of one thing at a time, so while it is possible (even
trivial) to describe the language {anbn | n ≥ 0} by a context-free gram-
mar, the language {anbncn | n ≥ 0} is not a context-free language. The
information kept on the stack follows a strict LIFO order, which further
restricts the languages that can be described. It is, for example, trivial
to represent the language of palindromes (strings that read the same
forwards and backwards) by a context-free grammar, but the language
of strings that can be constructed by repeating a string twice is not
context-free.

Context-free languages are, as regular languages, closed under union:
It is easy to construct a grammar for the union of two languages given
grammars for each of these. Context-free languages are also closed un-
der pre�x, su�x, subsequence and reversal. Indeed, the language con-

3.18. FURTHER READING 107

sisting of all subsequences of a context-free language is actually reg-
ular. However, context-free languages are not closed under intersec-
tion or complement. For example, the languages {anbncm | m,n ≥ 0}
and {ambncn | m,n ≥ 0} are both context-free while their intersection
{anbncn | n ≥ 0} is not.

3.18 Further reading

Context-free grammars were �rst proposed as a notation for describing
natural languages (e.g., English or French) by the linguist Noam Chom-
sky [13], who de�ned this as one of three grammar notations for this pur-
pose. The quali�er �context-free� distinguishes this notation from the
other two grammar notations, which were called �context-sensitive� and
�unconstrained�. In context-free grammars, derivation of a nonterminal
is independent of the context in which the terminal occurs, whereas the
context can restrict the set of derivations in a context-sensitive grammar.
Unrestricted grammars can use the full power of a universal computer,
so these represent all computable languages.

Context-free grammars are actually too weak to describe natural
languages, but were adopted for de�ning the Algol60 programming lan-
guage [15]. Since then, variants of this notation has been used for de�n-
ing or describing almost all programming languages.

Some languages have been designed with speci�c parsing methods in
mind: Pascal [19] has been designed for LL(1) parsing while C [23] was
originally designed to �t LALR(1) parsing, but this property was lost in
subsequent versions of the language.

Most parser generators are based on LALR(1) parsing, but a few use
LL(1) parsing. An example of this is ANTLR (http://www.antlr.org/).

�The Dragon Book� [4] tells more about parsing methods than the
present book.

Several textbooks exist that describe properties of context-free lan-
guages, e.g., [18].

The methods presented here for rewriting grammars based on oper-
ator precedence uses only in�x operators. If pre�x or post�x operators
have higher precedence than all in�x operators, the method presented
here will work (with trivial modi�cations), but if there are in�x opera-
tors that have higher precedence than some pre�x or post�x operators,
it breaks down. A method for handling arbitrary precedences of in�x,
pre�x and post�x operators is presented in [1].

108 CHAPTER 3. SYNTAX ANALYSIS

Exercises

Exercise 3.1

Figures 3.7 and 3.8 show two di�erent syntax trees for the string
aabbbcc using grammar 3.4. Draw a third, di�erent syntax tree for
aabbbcc using the same grammar and show the left-derivation that cor-
responds to this syntax tree.

Exercise 3.2

Draw the syntax tree for the string aabbbcc using grammar 3.9.

Exercise 3.3

Write an unambiguous grammar for the language of balanced parenthe-
ses, i.e. the language that contains (among other) the sequences

ε (i.e. the empty string)
()
(())
()()

(()(()))

but none of the following

(
)
)(
(()
()())

Exercise 3.4

Write grammars for each of the following languages:

a) All sequences of as and bs that contain the same number of as and
bs (in any order).

b) All sequences of as and bs that contain strictly more as than bs.

c) All sequences of as and bs that contain a di�erent number of as
and bs.

3.18. FURTHER READING 109

d) All sequences of as and bs that contain twice as many as as bs.

Exercise 3.5

We extend the language of balanced parentheses from exercise 3.3 with
two symbols: [and]. [corresponds to exactly two normal opening
parentheses and] corresponds to exactly two normal closing parentheses.
A string of mixed parentheses is legal if and only if the string produced
by replacing [by ((and] by)) is a balanced parentheses sequence.
Examples of legal strings are

ε
()()

((]

[]

[)(]

[(])

a) Write a grammar that recognises this language.

b) Draw the syntax trees for [)(] and [(]).

Exercise 3.6

Show that the grammar

A → −A
A → A− id
A → id

is ambiguous by �nding a string that has two di�erent syntax trees.

Now make two di�erent unambiguous grammars for the same lan-
guage:

a) One where pre�x minus binds stronger than in�x minus.

b) One where in�x minus binds stronger than pre�x minus.

Show the syntax trees using the new grammars for the string you used
to prove the original grammar ambiguous.

110 CHAPTER 3. SYNTAX ANALYSIS

Exercise 3.7

In grammar 3.2, replace the operators − and / by < and :. These have
the following precedence rules:

< is non-associative and binds less tightly than + but more tightly
than :.

: is right-associative and binds less tightly than any other operator.

Write an unambiguous grammar for this modi�ed grammar using the
method shown in section 3.4.1. Show the syntax tree for 2 : 3 < 4 + 5 :
6 ∗ 7 using the unambiguous grammar.

Exercise 3.8

Extend grammar 3.13 with the productions

Exp → id
Matched →

then calculate Nullable and FIRST for every production in the grammar.
Add an extra start production as described in section 3.10 and cal-

culate FOLLOW for every nonterminal in the grammar.

Exercise 3.9

Calculate Nullable, FIRST and FOLLOW for the nonterminals A and B
in the grammar

A → BAa
A →
B → bBc
B → AA

Remember to extend the grammar with an extra start production when
calculating FOLLOW.

Exercise 3.10

Eliminate left-recursion from grammar 3.2.

Exercise 3.11

Calculate Nullable and FIRST for every production in grammar 3.20.

3.18. FURTHER READING 111

Exercise 3.12

Add a new start production Exp′ → Exp $ to the grammar produced in
exercise 3.10 and calculate FOLLOW for all nonterminals in the resulting
grammar.

Exercise 3.13

Make a LL(1) parser-table for the grammar produced in exercise 3.12.

Exercise 3.14

Consider the following grammar for post�x expressions:

E → E E +
E → E E ∗
E → num

a) Eliminate left-recursion in the grammar.

b) Do left-factorisation of the grammar produced in question a.

c) Calculate Nullable, FIRST for every production and FOLLOW for
every nonterminal in the grammar produced in question b.

d) Make a LL(1) parse-table for the grammar produced in question
b.

Exercise 3.15

Extend grammar 3.11 with a new start production as shown in sec-
tion 3.14 and calculate FOLLOW for every nonterminal. Remember to
add an extra start production for the purpose of calculating FOLLOW
as described in section 3.10.

Exercise 3.16

Make NFAs (as in �gure 3.26) for the productions in grammar 3.11 (after
extending it as shown in section 3.14) and show the epsilon-transitions
as in �gure 3.27. Convert the combined NFA into an SLR DFA like the
one in �gure 3.28. Finally, add reduce and accept actions based on the
FOLLOW sets calculated in exercise 3.15.

112 CHAPTER 3. SYNTAX ANALYSIS

Exercise 3.17

Extend grammar 3.2 with a new start production as shown in sec-
tion 3.14 and calculate FOLLOW for every nonterminal. Remember to
add an extra start production for the purpose of calculating FOLLOW
as described in section 3.10.

Exercise 3.18

Make NFAs (as in �gure 3.26) for the productions in grammar 3.2 (after
extending it as shown in section 3.14) and show the epsilon-transitions
as in �gure 3.27. Convert the combined NFA into an SLR DFA like
the one in �gure 3.28. Add reduce actions based on the FOLLOW sets
calculated in exercise 3.17. Eliminate the con�icts in the table by using
operator precedence rules as described in section 3.15. Compare the size
of the table to that from exercise 3.16.

Exercise 3.19

Consider the grammar

T → T -> T
T → T * T
T → int

where -> is considered a single terminal symbol.

a) Add a new start production as shown in section 3.14.

b) Calculate FOLLOW(T). Remember to add an extra start produc-
tion.

c) Construct an SLR parser-table for the grammar.

d) Eliminate con�icts using the following precedence rules:

� * binds tighter than ->.

� * is left-associative.

� -> is right-associative.

3.18. FURTHER READING 113

Exercise 3.20

In section 3.16.3 it is mentioned that user-de�ned operator precedences
in programming languages can be handled by parsing all operators with
a single �xed precedence and associativity and then using a separate
pass to restructure the syntax tree to re�ect the declared precedences.
Below are two other methods that have been used for this purpose:

a) An ambiguous grammar is used and con�icts exist in the SLR ta-
ble. Whenever a con�ict arises during parsing, the parser consults
a table of precedences to resolve this con�ict. The precedence table
is extended whenever a precedence declaration is read.

b) A terminal symbol is made for every possible precedence and as-
sociativity combination. A con�ict-free parse table is made either
by writing an unambiguous grammar or by eliminating con�icts in
the usual way. The lexical analyser uses a table of precedences to
assign the correct terminal symbol to each operator it reads.

Compare all three methods. What are the advantages and disadvantages
of each method?.

Exercise 3.21

Consider the grammar

A → a A a
A → b A b
A →

a) Describe the language that the grammar de�nes.

b) Is the grammar ambiguous? Justify your answer.

c) Construct a SLR parse table for the grammar.

d) Can the con�icts in the table be eliminated?

Exercise 3.22

The following ambiguous grammar describes boolean expressions:

114 CHAPTER 3. SYNTAX ANALYSIS

B → true
B → false
B → B ∨ B
B → B ∧ B
B → ¬ B

a) Given that negation (¬) binds tighter than conjunction (∧) which
binds tighter than disjunction (∨) and that conjunction and dis-
junction are both right-associative, rewrite the grammar to be un-
ambiguous.

b) Write a grammar that generates only true boolean expressions.
Hint: Use the answer from question a) and add an additional non-
terminal for false boolean expressions.

Bibliography

[1] A. Aasa. Precedences in speci�cation and implementations of pro-
gramming languages. In J. Maluszy«ski and M. Wirsing, editors,
Proceedings of the Third International Symposium on Programming
Language Implementation and Logic Programming, number 528 in
LNCS, pages 183�194. Springer Verlag, 1991.

[2] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure
and Interpretation of Computer Programs. MIT Press, 1996. Also
downloadable from
http://mitpress.mit.edu/sicp/full-text/sicp/book/.

[3] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ull-
man. Compilers; Principles, Techniques and Tools. Addison-Wesley,
2007. Newer edition of [5].

[5] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers; Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986. Rereleased in
extended form as [4].

[6] Hassan Aït-Kaci. Warren's Abstract Machine � A Tutorial Recon-
struction. MIT Press, 1991.

[7] John R. Allen and Ken Kennedy. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann,
2001.

[8] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[9] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1998.

257

258 BIBLIOGRAPHY

[10] H. Bratman. An alternative form of the `uncol' diagram. Commu-
nications of the ACM, 4(3):142, 1961.

[11] Preston Briggs. Register Allocation via Graph Coloring, Tech. Rept.
CPC-TR94517-S. PhD thesis, Rice University, Center for Research
on Parallel Computation, Apr. 1992.

[12] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 1(4):481�494, 1964.

[13] Noam Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, IT-2(3):113�124, 1956.

[14] J. Earley and H. Sturgis. A formalism for translator interactions.
Communications of the ACM, 13:607�617, 1970.

[15] Peter Naur (ed.). Revised report on the algorithmic language algol
60. Communications of the ACM, 6(1):1�17, 1963.

[16] John Hatcli�, Torben Mogensen, and Peter Thiemann (Eds.). Par-
tial Evaluation: Practice and Theory, volume 1706 of Lecture Notes
in Computer Science. Springer Verlag, 1999.

[17] Raymond J. Hookway and Mark A. Herdeg. Digital fx!32: Com-
bining emulation and binary translation.
http://www.cs.tufts.edu/comp/150PAT/optimization/DTJP01PF.pdf,
1997.

[18] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman. Intro-
duction to Automata Theory, Languages and Computation, 2nd ed.
Addison-Wesley, 2001.

[19] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Re-
port (2nd ed.). Springer-Verlag, 1975.

[20] Neil D. Peyton Jones, Carsten Gomard, and Peter Sestoft. Par-
tial Evaluation and Automatic Program Generation. Prentice Hall,
1993.

[21] Simon L. Peyton Jones and David Lester. Implementing Functional
Languages � A Tutorial. Prentice Hall, 1992.

[22] J. P. Keller and R. Paige. Program derivation with veri�ed trans-
formations � a case study. Communications in Pure and Applied
Mathematics, 48(9�10), 1996.

BIBLIOGRAPHY 259

[23] B. W. Kerninghan and D. M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, 1978.

[24] M. E. Lesk. Lex: a Lexical Analyzer Generator. Technical Re-
port 39, AT&T Bell Laboratories, Murray Hill, N. J., 1975.

[25] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation,
2nd ed. Addison-Wesley, Reading, Massachusetts, 1999.

[26] R. McNaughton and H. Yamada. Regular expressions and state
graphs for automata. IEEE Transactions on Electronic Computers,
9(1):39�47, 1960.

[27] Robin Milner. A theory of type polymorphism in programming.
Journal of Computational Systems Science, 17(3):348�375, 1978.

[28] Robin Milner. Communication and Concurrency. Prentice-Hall,
1989.

[29] Torben Æ. Mogensen, David A. Schmidt, and I. Hal Sudborough,
editors. The essence of computation: complexity, analysis, trans-
formation. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[30] Steven S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[31] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999.

[32] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, 1998.

[33] David A. Patterson and John L. Hennessy. Computer Organization
& Design, the Hardware/Software Interface. Morgan Kaufmann,
1998.

[34] Vern Paxson. Flex, version 2.5, a fast scanner generator.
http://www.gnu.org/software/flex/manual/html_mono/flex.html,
1995.

[35] Mikkel Thorup. All structured programs have small tree-width and
good register allocation. Information and Computation, 142(2):159�
181, 1998.

260 BIBLIOGRAPHY

[36] Niklaus Wirth. The design of a pascal compiler. Software - Practice
and Experience, 1(4):309�333, 1971.

Index

abstract syntax, 101, 122
accept, 91, 95, 96
action, 43, 100, 101
activation record, 198
alias, 211, 212
allocation, 155, 216
Alpha, 169, 255
alphabet, 10
ARM, 169
array, 237
assembly, 3
assignment, 139
associative, 67, 68
attribute, 121

inherited, 122
synthesised, 121

available assignments, 223

back-end, 135
biased colouring, 192
binary translation, 255
binding

dynamic, 115
static, 115

bootstrapping, 247, 250
full, 252
half, 252
incremental, 254

Bratman diagram, 248

C, 4, 41, 67, 70, 102, 104, 107, 119,
141, 147, 149, 152, 156, 210,
212, 217, 236, 244

C++, 245
cache, 237
cache line, 237
call sequence, 239
call stack, 197
call-by-reference, 211
call-by-value, 197
call-sequence, 199
callee-saves, 202, 204
caller-saves, 202, 204
caller/callee, 197
calling convention, 199
CISC, 170
coalescing, 193
code generator, 168, 171
code hoisting, 174, 235
column-major, 156
comments

nested, 43
common subexpression elimination,

174, 223, 228, 236
compile-time, 140
compiling compilers, 250
con�ict, 83, 88, 97, 99, 104

reduce-reduce, 97, 99
shift-reduce, 97, 99

consistent, 32
constant in operand, 169
constant propagation, 175
context-free, 121

grammar, 55, 56, 61
language, 106

261

262 INDEX

dangling-else, 70, 97, 99
data-�ow analysis, 222, 235
dead code elimination, 231
dead variable, 170, 180
declaration, 115

global, 115
local, 115

derivation, 60, 60, 61, 71, 82
left, 64, 80
leftmost, 61
right, 64, 89
rightmost, 61

DFA, 17, 21, 46, 90, 91
combined, 39
converting NFA to, 23, 27
equivalence of, 31
minimisation, 31, 32, 38
unique minimal, 31

Digital Vax, 218
distributive, 26
domain speci�c language, 5
dynamic programming, 171

environment, 116, 124
epilogue, 199, 239
epsilon transition, 16
epsilon-closure, 24

FA, 17
�nite automaton

graphical notation, 17
�nite automaton, 10, 16

deterministic, 21
nondeterministic, 17

FIRST, 73, 76
�xed-point, 25, 74, 76, 182, 184
�ag, 168

arithmetic, 169
�oating-point constant, 15
�oating-point numbers, 139
FOLLOW, 77

FORTRAN, 41
frame, 198
frame pointer, 199
front-end, 136
function call, 139, 239
function calls, 167, 197
functional, 116

gen and kill sets, 181
generic types, 131
global variable, 210
go, 91, 93
grammar, 71

ambiguous, 64�66, 68, 72, 76,
85, 97

equivalent, 65
graph colouring, 186, 187
greedy algorithm, 171

hashing, 119
Haskell, 104, 117
heuristics, 186, 190

IA-32, 169
IA-64, 169
IBM System/370, 218
imperative, 116
implicit types, 132
in and out sets, 181
index check, 159

translation of, 159
index-check

elimination, 175
index-check elimination, 231
inlining, 239
instruction set description, 171
integer, 15, 139
interference, 185
interference graph, 185
intermediate code, 3, 135, 179
intermediate language, 3, 136, 167,

174

INDEX 263

tree-structured, 176
interpreter, 3, 135, 137, 248

Java, 41, 102, 136
jump, 139

conditional, 139, 168
jump-to-jump optimisation, 165, 228
just-in-time compilation, 136

keyword, 14

label, 139
LALR(1), 89, 100, 107
language, 10, 61

context-free, 106
high-level, 135, 247

left-associative, 66, 99
left-derivation, 72
left-factorisation, 87
left-recursion, 67, 68, 87, 102

elimination of, 85
indirect, 86

lexer, 9, 37, 71
lexer generator, 37, 42
lexical, 9

analysis, 9
error, 42

lexical analysis, 2
lexing, 121
linking, 3
LISP, 217
live variable, 180, 197

at end of procedure, 182
live-range splitting, 193
liveness, 180
liveness analysis, 181
LL(1), 56, 80, 82, 85, 89, 97, 102,

107
local variables, 197
longest pre�x, 41
lookahead, 80
LR, 89

machine code, 3, 135, 137, 167
machine language, 179
memory transfer, 139
MIPS, 169, 170, 171, 176, 218
monotonic, 24

name space, 119, 122
nested scopes, 212, 214
NFA, 17, 91, 93, 105

combined, 38
converting to DFA, 23, 27
fragment, 19

non-associative, 67, 99
non-local variable, 210
non-recursive, 68
nonterminal, 56
Nullable, 73, 76

operator, 139
operator hierarchy, 66
optimisations, 174
overloading, 130

PA-RISC, 169
parser, 65

generator, 66, 100, 104
predictive, 71, 72, 77
shift-reduce, 90
table-driven, 89
top-down, 71

parsing, 55, 64, 121
bottom-up, 72
predictive, 76, 77, 80, 81
table-driven, 82

Pascal, 4, 67, 70, 102, 107, 119,
211, 212

pattern, 170
Pentium, 255
persistent, 116, 117
pointer, 211, 212
polymorphism, 131
PowerPC, 169

264 INDEX

precedence, 59, 65, 66, 68, 69, 89,
97

declaration, 97, 99, 106
rules, 66

prefetch, 237
processor, 247
production, 56, 58

empty, 57, 76
nullable, 73, 77

prologue, 199, 239

recursive descent, 81
reduce, 90, 91, 95
register, 179

for passing function parameters,
204

register allocation, 3, 167, 179
by graph colouring, 186
global, 185

register allocator, 208
regular expression, 10, 43

converting to NFA, 19
equivalence of, 31

regular language, 31, 44
return address, 198, 204
right-associative, 67, 99
right-recursion, 68
RISC, 167, 170, 204
row-major, 156
run-time, 140

Scheme, 104, 117
scope, 115

nested, 212, 214
select, 188
sequential logical operators, 148, 149
set constraints, 78
set equation, 24, 24
shift, 90, 91, 93
simplify, 187
SLR, 56, 89, 97

algorithm, 92
construction of table, 91, 96

SML, 4, 41, 67, 104, 117, 119, 212
source program, 249
Sparc, 169
spill, 199
spill-code, 190
spilling, 179, 188
stack automaton, 55
stack automaton, 106
stack pointer, 216
start symbol, 56, 71
starting state, 16
state, 16, 17

accepting, 17, 19, 28, 32, 37
dead, 35
�nal, 17
initial, 17
starting, 16, 17, 19, 27, 38

static links, 214
subset construction, 27
symbol table, 116, 116, 124

implemented as function, 118
implemented as list, 117
implemented as stack, 118

syntactical category, 122
syntax analysis, 2, 9, 55, 60, 64, 71
syntax tree, 55, 61, 71, 86

T-diagram, 248
tail call, 240
tail call optimisation, 240
target program, 249
templates, 245
terminal, 56
token, 9, 37, 39, 43, 71
transition, 16, 17, 28, 32

epsilon, 16, 94
translation

of arrays, 153
of case-statements, 152

INDEX 265

of declarations, 160
of expressions, 140
of function, 209
of index checks, 159
of logical operators, 147, 149
of multi-dimensional arrays, 156
of non-zero-based arrays, 159
of records/structs, 160
of statements, 144
of strings, 159
of break/exit/continue, 152
of goto, 152

type checking, 2, 121, 124
of assignments, 130
of data structures, 130
of expressions, 124
of function declarations, 127
of programs, 127

type conversion, 131
type error, 124

undecidable, 65

value numbering, 228
value numbering, 245
variable

global, 210
non-local, 210

variable name, 14

white-space, 9, 43
word length, 154
work-list algorithm, 26

