Nondeterministic Finite Automata

Nondeterminism gives a machine multiple
options for its moves.



Nondeterministic Finite Automata

In a nondeterministic finite automaton (NFA),
for each state there can be zero, one, two, or
more transitions corresponding to a particular
symbol.

If NFA gets to state with more than one possible
transition corresponding to the input symbol,
we say it branches.

If NFA gets to a state where there is no valid
transition, then that branch dies.

Goddard 3a: 2



NFA Acceptance

An NFA accepts the input string if there exists
some choice of transitions that leads to ending
in an accept state.

Thus, one accepting branch is enough for the
overall NFA to accept, but every branch must
reject for the overall NFA to reject.

This is a model of computation. We write DFA
to specify a deterministic finite automaton (the
one defined earlier). If type doesn’t matter, we
now just write FA.

Goddard 3a: 3



Example

What does this NFA accept?

Goddard 3a: 4



Example: Doubles

What does this NFA accept?

It accepts any binary string that contains 00 or
11 as a substring.

Goddard 3a: 5



Example: Ending of Strings

An NFA that accepts all binary strings that end

with 101.

Goddard 3a: 6



Example: Ending of Strings

An NFA that accepts all binary strings that end

with 101.
0,1

)

Goddard 3a: 7



Example: Simultaneous Patterns

An NFA for a*+(ab)*

Goddard 3a: 8



Example: Simultaneous Patterns

An NFA for a*+(ab)*

Goddard 3a: 9



Nondeterminism as “Guess and Verify”

There are many ways to view nondeterminism.
One way is the “guess and verify” idea: We as-
sume the NFA is clairvoyant and always guesses

correctly the next state to go to. However, the
NFA must “check” its guesses.

Goddard 3a: 10



Nondeterminism via Computation Tree

We can think of nondeterminism as a tree grow-
ing downwards, with the children of a node its
possible successors. (The input is accepted ex-
actly when at least one of the branches ends in

an accept state.)
Accept \ \

/N

Reject

Goddard 3a: 11



More Nondeterminism: =-transitions

We also allow e-transitions: arrows labeled with
the empty string. These allow the NFA to change
state without consuming an input symbol.

Goddard 3a: 12



Example

Goddard 3a: 13



Example

1

Accepts all binary strings where the last symbol
is 0 or that contain only 1’s.

Goddard 3a: 14



Another Example

Here is another NFA for a*+(ab)™:

Goddard 3a: 15



Formal Definition

Formally, an NFA is a 5-tuple (Q, >, qp, T, 0) where
as before:

* () is finite set of states;

* ) is alphabet of input symbols;

® o is start state;

* T is subset of () giving the accept states;
and

* ) is the transition function.

Now the transition function specifies a set of

states rather than a state: it maps @) x X to
{ subsets of @) }.

Goddard 3a: 16



Practice

Give an NFA for the set of all binary strings that
have either the number of 0’s odd, or the num-
ber of 1’s not a multiple of 3, or both.

Goddard 3a: 17



Solution to Practice

Goddard 3a: 18



Summary

A nondeterministic finite automaton (NFA) can
have zero, one, or multiple transitions corre-
sponding to a particular symbol. It is defined
to accept the input if there exists some choice
of transitions that cause the machine to end up
in an accept state. Nondeterminism can also
be viewed as a tree, or as a “guess-and-verity”
concept. You can also have s-transitions, where
the NFA can change state without consuming
an input symbol.

Goddard 3a: 19



