
Data Structures
COMP 2100

Fall 2022

Project 1: Haiku Very Much

Haiku is a traditional form of poetry that originated in Japan. Wikipedia describes its structure like this:

“Traditional Japanese haiku consist of three phrases that contain a kireji, or "cutting

word", 17 on (a type of Japanese phoneme) in a 5, 7, 5 pattern, and a kigo, or seasonal

reference. However, modern haiku vary widely on how closely they follow these

traditional elements.”

While it is common for English haiku to implement the 5-7-5 pattern as a syllable count, this is not an

exact translation of the Japanese on. For this reason, it is reasonable in English haiku to deviate from this

pattern and have other forms (not based on syllable count) as templates for haiku. For example:

A little wave…

The firefly has risen near the shade

Hidden broken pine

Admittedly, this is not a good poem. That is mainly because it was automatically generated by a computer.

Specification

For this lab project, you are to write an automatic haiku generator. The haiku generator will produce a

poem that matches one of several pre-defined patterns, using words that are supplied in a vocabulary

input file.

The vocabulary will consist of words from five parts of speech: articles, adjectives, nouns, verbs, and

prepositions. A sample input file is provided for download on the course web page. Its format will consist

of, for each part of speech, a section header, which is a line beginning with * and the part of speech label,

followed by any number of lines each containing one vocabulary word or phrase, as seen here:

* Nouns

MOUSE

HOUSE

* Verbs

ATE

CHASED

* Prepositions

WITH

etc.

The haiku patterns will consist of sequences of parts of speech (kind of like in Mad-Libs, but with all the

words missing) and can be hard-coded as follows:

1. Article-adjective-noun...

Article-noun-verb-preposition-article-noun

Adjective-adjective-noun

2. Noun-preposition-article-noun

Article-adjective-noun-preposition-article-noun

Adjective-noun

3. Article-adjective-noun

Preposition-article-adjective-noun

Article-noun-verb

4. Article-adjective-noun-verb

Article-adjective-noun

Preposition-article-adjective-noun

When your program is run the name of the vocabulary file should be passed as a command line argument.

The program will then randomly select one of these four patterns, and produce a poem by randomly

selecting the appropriate words from the vocabulary lists that were read from the file. The program should

offer to produce more poems until the user declines. Here is a sample session:

C:\>java Haiku vocab.txt

The hidden breeze has passed

The misty wind

Near an icy snow

Would you like another? Yes

Breeze in the sea

The dry morning over a moon

Misty lake

Would you like another? No

C:\>

Your solution should minimally consist of two Java source files: one that is the main application class that

contains a main method and the user interaction event loop illustrated above; the other should be a class

that represents the vocabulary data in the input file. This constructor for this second class should be

passed the name of the input file when it is instantiated from the main application. The full API for this

class is shown below.

Class Vocabulary

Constructor public Vocabulary(String filename)

 Requires: file specified by filename exists
Ensures: instantiates a Vocabulary object that is populated with the data
contained in the file

verb public String verb(boolean unique)

 Ensures: returns a random verb from the vocabulary; if unique is true the returned
value will be distinct from the most recently produced verb

noun public String noun(boolean unique)

 Ensures: returns a random noun from the vocabulary; if unique is true the
returned value will be distinct from the most recently produced noun

article public String article()

 Ensures: returns a random article from the vocabulary

adjective public String adjective(boolean unique)

 Ensures: returns a random adjective from the vocabulary; if unique is true the
returned value will be distinct from the most recently produced adjective

preposition public String preposition(boolean unique)

 Ensures: returns a random preposition from the vocabulary; if unique is true the
returned value will be distinct from the most recently produced preposition

Considerations

• The Vocabulary class is simply representing what it finds in the input file. It is agnostic about upper

and lower case. The client class should do whatever case conversions are necessary. For example,

you will notice that in the templates the first word of each line should be capitalized, but nothing

else. (Note that I am suggesting here that the template is encoding information about case.)

• You should make sure that any time the article ‘A’ is returned by vocabulary that it be in

agreement with the next word. In other words, if the word following the article starts with a vowel

change the article to ‘AN’. I would recommend that you implement a method to take care of this.

• The simplest way to select a template is to pick a random integer between 1 and 4 and use a

switch statement that hard codes each template. However, I will offer up to 15% extra credit on

the project if you instead allow the templates to be provided by the user in a second input file on

the command line. I would recommend doing it the easy way first, and then try for the extra credit

in a copy of the project. This way if you don’t get that part completed you’ll still have a working

solution.

All work must be done within assigned teams. You may discuss general concepts with your classmates,

but it is never acceptable for you to look at another team's code. Please refer to the course policies if you

have any questions about academic integrity. If you have trouble with the assignment, I am always

available for assistance.

All work is due before Friday, Sept. 16, 2020 at 11:59 p.m.

To Submit: Zip your project and email it as an attachment to dstucki@otterbein.edu

mailto:dstucki@otterbein.edu

