
Data Structures 
COMP 2100 

Fall 2022 

Lab 7: Evil Hangman 
 

How Can Hangman Be Evil? 
It's hard to write computer programs to play games. When we as humans sit down to play a game, we can 

draw on past experience, adapt to our opponents' strategies, and learn from our mistakes. Computers, 

on the other hand, blindly follow a preset algorithm that (hopefully) causes it to act somewhat 

intelligently. Though computers have bested their human masters in some games, most notably checkers 

and chess, the programs that do so often draw on hundreds of years of human game experience and use 

extraordinarily complex algorithms and optimizations to out-calculate their opponents. 

While there are many viable strategies for building competitive computer game players, there is one 

approach that has been fairly neglected in modern research – cheating. Why spend all the effort trying to 

teach a computer the nuances of strategy when you can simply write a program to play dirty and win 

handily all the time? In this assignment, you will build a mischievous program that bends the rules of 

Hangman to trounce its human opponent time and time again. In doing so, you'll cement your skills with 

abstract data types and iterators, and will hone your general programming savvy. Plus, you'll end up with 

a piece of software which will be highly entertaining. At least, from your perspective. :-) 

In case you aren't familiar with the game Hangman, the rules are as follows: 

1. One player chooses a secret word, then writes out a number of dashes equal to the word length. 

2. The other player begins guessing letters. Whenever she guesses a letter contained in the hidden 

word, the first player reveals each instance of that letter in the word. Otherwise, the guess is 

wrong. 

3. The game ends either when all the letters in the word have been revealed or when the guesser 

has run out of guesses. 

Fundamental to the game is the fact that the first player accurately represents the word she has chosen. 

That way, when the other players guess letters, she can reveal whether that letter is in the word. But what 

happens if the player doesn't do this? This gives the player who chooses the hidden word an enormous 

advantage. For example, suppose that you're the player trying to guess the word, and at some point you 

end up revealing letters until you arrive at this point with only one guess remaining: 

D O – B L E 

There are only two words in the English language that match this pattern: “doable” and “double.” If the 

player who chose the hidden word is playing fairly, then you have a fifty-fifty chance of winning this game 

if you guess 'A' or 'U' as the missing letter. However, if your opponent is cheating and hasn't actually 

committed to either word, then there is no possible way you can win this game. No matter what letter 



you guess, your opponent can claim that she had picked the other word, and you will lose the game. That 

is, if you guess that the word is “doable,” she can pretend that she committed to “double” the whole time, 

and vice-versa. 

Let's illustrate this technique with an example. Suppose that you are playing Hangman and it's your turn 

to choose a word, which we'll assume is of length four. Rather than committing to a secret word, you 

instead compile a list of every four-letter word in the English language. For simplicity, let's assume that 

English only has a few four-letter words, all of which are reprinted here: 

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX 

Now, suppose that your opponent guesses the letter 'E.' You now need to tell your opponent which letters 

in the word you've “picked” are E's. Of course, you haven't picked a word, and so you have multiple 

options about where you reveal the E's. Here's the above word list, with E's highlighted in each word: 

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX 

If you'll notice, every word in your word list falls into one of five “word families:” 

• ----, which contains the word ALLY, COOL, and GOOD. 

• -E--, containing BETA and DEAL. 

• --E-, containing FLEW and IBEX. 

• E--E, containing ELSE. 

• ---E, containing HOPE. 

Since the letters you reveal have to correspond to some word in your word list, you can choose to reveal 

any one of the above five families. There are many ways to pick which family to reveal – perhaps you want 

to steer your opponent toward a smaller family with more obscure words, or toward a larger family in the 

hopes of keeping your options open. In this assignment, in the interests of simplicity, we'll adopt the latter 

approach and always choose the largest of the remaining word families. In this case, it means that you 

should pick the family ----. This reduces your word list down to 

ALLY COOL GOOD 

and since you didn't reveal any letters, you would tell your opponent that his guess was wrong. 

Let's see a few more examples of this strategy. Given this three-word word list, if your opponent guesses 

the letter O, then you would break your word list down into two families: 

• -OO-, containing COOL and GOOD. 

• ----, containing ALLY. 

The first of these families is larger than the second, and so you choose it, revealing two O's in the word 

and reducing your list down to 

COOL GOOD 



But what happens if your opponent guesses a letter that doesn't appear anywhere in your word list? For 

example, what happens if your opponent now guesses 'T'? This isn't a problem. If you try splitting these 

words apart into word families, you'll find that there's only one family: the family ---- in which T appears 

nowhere and which contains both COOL and GOOD. Since there is only one word family here, it's trivially 

the largest family, and by picking it you'd maintain the word list you already had. 

There are two possible outcomes of this game. First, your opponent might be smart enough to pare the 

word list down to one word and then guess what that word is. In this case, you should congratulate him—

that's an impressive feat considering the scheming you were up to! Second, and by far the most common 

case, your opponent will be completely stumped and will run out of guesses. When this happens, you can 

pick any word you'd like from your list and say it's the word that you had chosen all along. The beauty of 

this setup is that your opponent will have no way of knowing that you were dodging guesses the whole 

time—it looks like you simply picked an unusual word and stuck with it the whole way. 

The Assignment 
Your assignment is to write a computer program which plays a game of Hangman using this “Evil 

Hangman” algorithm. In particular, your program should do the following: 

1. Read the file dictionary.txt, which contains the full contents of the Official Scrabble Player's 

Dictionary, Second Edition. This word list has over 120,000 words, which should be more than 

enough for our purposes. 

2. Prompt the user for a word length, re-prompting as necessary until she enters a number such 

that there's at least one word that's exactly that long. That is, if the user wants to play with 

words of length -42 or 137, since no English words are that long, you should re-prompt her. 

3. Prompt the user for a number of guesses, which must be an integer greater than zero. Don't 

worry about unusually large numbers of guesses – after all, having more than 26 guesses is 

clearly not going to help your opponent! 

4. Prompt the user for whether she wants to have a running total of the number of words 

remaining in the word list. This completely ruins the illusion of a fair game that you'll be 

cultivating, but it's quite useful for testing (and grading!) 

5. Play a game of Hangman using the Evil Hangman algorithm, as described below: 

a. Construct a list of all words in the English language whose length matches the input 

length. 

b. Print out how many guesses the user has remaining, along with any letters the player 

has guessed and the current blanked-out version of the word. If the user chose earlier to 

see the number of words remaining, print that out too. 

c. Prompt the user for a single letter guess, re-prompting until the user enters a letter that 

she hasn't guessed yet. Make sure that the input is exactly one character long and that 

it's a letter of the alphabet. 

d. Partition the words in the dictionary into groups by word family. 

e. Find the most common “word family” in the remaining words, remove all words from 

the word list that aren't in that family, and report the position of the letters (if any) to 



the user. If the word family doesn't contain any copies of the letter, subtract a 

remaining guess from the user. 

f. If the player has run out of guesses, pick a word from the word list and display it as the 

word that the computer initially “chose.” 

g. If the player correctly guesses the word, congratulate her. 

6. Ask if the user wants to play again and loop accordingly. 

It's up to you to think about how you want to partition words into word families. Think about what data 

structures would be best for tracking word families and the master word list. Would an associative array 

work? How about a stack or queue? Thinking through the design before you start coding will save you 

a lot of time and headache. 

Advice, Tips, and Tricks 
Since you're building this project from scratch, you'll need to do a bit of planning to figure out what the 

best data structures are for the program. There is no “right way” to go about writing this program, but 

some design decisions are much better than others (e.g. you can store your word list in a stack or map, 

but this is probably not the best option). Here are some general tips and tricks that might be useful: 

1. Letter position matters just as much as letter frequency. When computing word families, it's not 

enough to count the number of times a particular letter appears in a word; you also have to 

consider their positions. For example, “BEER” and “HERE” are in two different families even 

though they both have two E's in them. Consequently, representing word families as numbers 

representing the frequency of the letter in the word will get you into trouble. 

2. Watch out for gaps in the dictionary. When the user specifies a word length, you will need to 

check that there are indeed words of that length in the dictionary. You might initially assume 

that if the requested word length is less than the length of the longest word in the dictionary, 

there must be some word of that length. Unfortunately, the dictionary contains a few “gaps.” 

The longest word in the dictionary has length 29, but there are no words of length 27 or 26. Be 

sure to take this into account when checking if a word length is valid. 

3. Don't explicitly enumerate word families. If you are working with a word of length n, then there 

are 2n possible word families for each letter. However, most of these families don't actually 

appear in the English language. For example, no English words contain three consecutive U's, 

and no word matches the pattern E-EE-EE--E. Rather than explicitly generating every word 

family whenever the user enters a guess, see if you can generate word families only for words 

that actually appear in the word list. One way to do this would be to scan over the word list, 

storing each word in a table mapping word families to words in that family. 

Optional Extensions 
The algorithm outlined in this handout is by no means optimal, and there are several cases in which it 

will make bad decisions. For example, suppose that the human has exactly one guess remaining and that 

computer has the following word list: 

 



DEAL TEAR MONK 

If the human guesses the letter 'E' here, the computer will notice that the word family -E-- has two 

elements and the word family ---- has just one. Consequently, it will pick the family containing DEAL and 

TEAR, revealing an E and giving the human another chance to guess. However, since the human has only 

one guess left, a much better decision would be to pick the family ---- containing MONK, causing the 

human to lose the game. 

There are several other places in which the algorithm does not function ideally. For example, suppose 

that after the player guesses a letter, you find that there are two word families, the family --E- 

containing 10,000 words and the family ---- containing 9,000 words. Which family should the computer 

pick? If the computer picks the first family, it will end up with more words, but because it revealed a 

letter the user will have more chances to guess the words that are left. On the other hand, if the 

computer picks the family ----, the computer will have fewer words left but the human will have fewer 

guesses as well. More generally, picking the largest word family is not necessarily the best way to cause 

the human to lose. Often, picking a smaller family will be better. 

After you implement this assignment, take some time to think over possible improvements to the 

algorithm. You might weight the word families using some metric other than size. You might consider 

having the computer “look ahead” a step or two by considering what actions it might take in the future. 

If you implement something interesting, feel free to include it with your solution... I'd love to see what 

you've cooked up! 

Deliverables 
To submit this assignment, you need to submit all of your source files, along with a short description of 

what you've written. If you've improved upon or modified the base algorithm in some way, this is your 

time to show off your extensions. 

Remember that individual work is expected on the lab projects! 

To Submit: Email your source files as attachments to dstucki@otterbein.edu 

mailto:dstucki@otterbein.edu

