We’ve now seen boolean expressions and conditional statements in some detail. Condi-
tional statements allow us to define a number of alternative courses of action. The specific
action taken depends on the runtime value of the condition. Since a condition can be true
at some times, false at others, the same conditional statement might result in different
actions being performed at different times in the computation.

We’ve also introduced the notions of precondition, postcondition, and invariant.
These are all conditions—assertions that can be true or false. Preconditions, postcondi-
tions, and invariants are not formally part of the Java language. They are not constructs
recognized by the compiler or understood by the interpreter. However, they play an impor-
tant role in the design, specification, and verification of systems. We include them in com-
ments, and they directly influence the implementations we develop.

Since they are not part of Java per se, the language syntax does not restrict how we
express preconditions, postconditions, and invariants. We have considerable flexibility in
specifying these conditions, and can be quite informal if we want. On the other hand, we
do not have the compiler and interpreter making sure that what we write is not utter non-
sense. We use the Java syntax for boolean expressions wherever practical.

In this chapter, we further develop the ideas of precondition and postcondition, and
introduce a programming style called programming by contract. The point of program-
ming by contract is to clearly delineate in a method’s specification the respective responsi-
bilities of client and server. Preconditions and postconditions play a key role in defining
these responsibilities.

After studying this chapter you should understand the following:

programming by contract, defensive programming, and the difference between the two;
consequences of a client’s lack of adherence to a contract;

purpose and use of the assert statement.

Also, you should be able to:

@

express the responsibilities of client and server as a contract;
use assert statements to verify a client’s preconditions;

use contracts to reason about a program’s behavior.

Programming by contract

Let’s return to an issue raised in the previous chapter: the range of possible value:
might be returned from an Explorer’s tolerance query. We have decided that this -
has a lower bound of 0, and documented this fact in the specification of the method:

/7‘:*
* Annoyance (hit points) required to vanguish
* this Explorer.
* @ensure this.tolerance() >= 0
*/
public int tolerance ()

In order to guarantee this, we modified the constructor and the takeThat methe
that they never assign a negative value to the instance variable tolerance, regardle
the arguments provided by the client. We need to look at these two cases a little more «
fully.

In the case of takeThat, we protect against the client providing an annoyance t
greater than the current tolerance of the Explorer:

public void takeThat (int annoyance) {
if (annoyance <= tolerance)

tolerance = tolerance - annoyance;
else
tolerance = 0;

}

This does not at all seem unreasonable. We shouldn’t expect a client to worry a
the tolerance of the Explorer. We didn’t take the tolerance of the opponent into accc
for instance, when we implemented the Explorer’s method poke:

public void poke (Denizen opponent) ({
opponent. takeThat (annoyability) ;
}

There may, in fact, be no method for obtaining the tolerance of a Denizen.

In summary, we do not consider it an error for a client to call takeThat witl
argument greater than tolerance. It is simply a possibility that the implementatio:
takeThat must account for.

On the other hand, a call to the constructor with a negative initial value for tole
ance seems quite different. This is something that should not happen. It is an error

5.1 Programming by coniract 235

the fault of the client who makes the call. We document our expectation that the client will
provide a non-negative value when invoking the constructor as follows:

/*‘k
* Create a new Explorer with the specified name,
* initial location, annoyability, and tolerance.

* @require annoyability >= 0
* tolerance >= 0
*/

public Explorer (String name, Room location,
int annoyability, int tolerance)

We introduced this notation in the previous chapter. Recall that conditions labeled
“require” are called preconditions. They are requirements placed on the client. We are
stating that client must make sure that the arguments provided for annoyability and
tolerance are non-negative. Postconditions, labeled “ensure,” are requirements on the
implementor of the method. Preconditions and postconditions are part of a programming
style called programming by contract. The basic idea is that use of an object feature (query
or command) or constructor is considered to involve a “contract” between the client and
server. For an invocation of a feature or constructor to be correct, the client must make
sure that the preconditions are satisfied at the time of the call. If the preconditions are sat-
isfied, then the server guarantees that the postconditions will be satisfied when the method
completes (i.e., upon “return”). If the preconditions are not satisfied, that is, if the client
does not meet his end of the contract, then the server promises nothing at all.

programming by contract: a programming style in which the invocation of
a method is viewed as a contract between client and server, with each hav-
ing explicitly stated responsibilities.

Understand that this is not an issue of a user entering bad data. The user interface is
responsible for interacting with a user and making sure that bad data doesn’t get into the
system. What we’re concerned with here is one object, a-client, invoking a method of
another object. If a client invokes a method without the preconditions being satisfied, it is
because of a programming error in the client.

The point of this approach is to delineate, clearly and explicitly, responsibilities
between the client and the server, and ultimately between the user of a method and the
implementor of the method. We want to make sure that any possible error that can arise at
run time is detected. But we’d like to do as little explicit error checking as possible. Spe-
cifically, we’d like only one test for each possible error condition. While this improves
program efficiency and reduces duplication of code, there is a much more important rea-
son for eliminating redundant testing. The most consequential impediment to writing cor-
rect, maintainable code is complexity. Adding error checking can make a simple
straightforward algorithm unduly convoluted. An approach in which each routine vali-
dates all of its arguments—sometimes called defensive programming—can result in an
excessively high degree of “code pollution.” The trick is to make a program reliable but

¢y
[

s
s

not so convoluted as to be unmaintainable. In programming by contract, we use prec
tions and postconditions to prescribe explicitly who—client or server—is responsib
what. Clearly there are many design trade-offs, and we’ll talk more about error handl
Chapter 15.
We can completely specify the behavior of the constructor by adding postcondi
like this:
/ *)

* Create a new Explorer with the gpecified name,
initial location, annoyability, and tolerance.

>

* @require annoyability >= 0

* . tolerance >= 0

* densure this.name () .equals (name)

* this.location() .equals{(location)

* this.annoyability () == annoyability
* this.tolerance() == tolerance

*/

public Explorer (String name, Room location,
int annoyability, int tolerance)

The postconditions precisely and concisely describe the relationship betwee
parameters of the constructor and the properties of the newly created object. The nor
means that if the newly created object is queried with the method name, for exam;
will return the string provided as the first argument of the constructor. That is, in the
dition

this.name () .equals (name)

this.name () refers to the value that the newly created object (this) will return
the method name is invoked. The identifier name on the right refers to the first para
of the constructor.

Granted, the ensure clause is a bit redundant here. It essentially repeats what is s:
the descriptive sentence beginning “Create...,” and could be omitted without a substi
loss in clarity or precision.

We have now completely specified the behavior of the constructor for the client
remember the format we use for writing precondition and postconditions is a conve
intended to convey information to the human reader: it is not part of the programminy
guage. The client must make sure that the preconditions are satisfied before the metk
invoked, in which case the implementor guarantees that the postconditions will be
fied upon completion of the method.

Verifying preconditions: the assert statement

We have placed preconditions, annoyability >= 0 and tolerance >= 0, 0
constructor. If the client invokes the constructor with non-negative annoyability
tolerance arguments, we are committed to produce a new, well-formed Exp

5.1 Programming by coniract 237

object. If the client invokes the method with either argument negative, we promise nothing
at all. This is important to realize. If the client does not adhere to its end of the contract,
the implementation is not committed to any particular action.

In fact, if the client does not adhere to the contract, the program is erroneous and the
behavior of an erroneous program is, by definition, unpredictable.

But of course something must happen. What we do depends to some degree on how
much we trust our client. It may be that we are absolutely convinced that the constructor
will never be called with a negative second argument—perhaps we’re writing the client
code ourselves—in which case we need do nothing. But systems change, and initial values
are often computed in complex (and error-prone) ways. We can easily imagine, for
instance, employing a nontrivial function that determines a random initial value for tol-
erance or annoyability.

The real problem with not verifying the values of the constructor arguments is that we
can end up violating a class invariant. Suppose we simply leave the constructor as we orig-
inally wrote it:

public Explorer (String name, Room location,
int annoyability, int tolerance) {
this.name = name;

this.location = location;
this.annoyability = annoyability;
this.tolerance = tolerance;

}

If the client violates the precondition, there is no specific requirement on the construc-
tor with regard to the contract. However, we have an internal implementation requirement
in the form of the invariant condition on the component tolerance:

private int tolerance; // current tolerance
// 1lnvariant:
// tolerance >= 0

Executing the constructor with the precondition violated will result in an Explorer object
being created that does not satisfy the invariant. For this reason, rather than for the require-
ments of the contract, the original implementation is not particularly satisfactory.

We can, of course, return to the implementation suggested in the previous chapter, in
which the argument value provided for tolerance is explicitly checked by the construc-
tor:

public Explorer (String name, Room location,
int annoyability, int tolerance) {

if (tolerance >= 0)
this.tolerance = tolerance;

else
this.tolerance

0;

But this 1s not entirely satisfactory either, since it treats an error condition (viol
of the precondition) as a normal, expected, occurrence, and introduces the explicit ct
ing we’re trying to avoid.

What would we like to happen if the client violates the precondition? Perhap
most we could hope for is that the interpreter or runtime system would recognize the
precondition was violated and generate an informative runtime error. Ideally, we’d lik
to happen without having to write anything but the precondition. (Remember a major
of this approach is to avoid cluttering our code with excessive error checks.) That is,
like the interpreter to automatically check that preconditions are satisfied whene
method is invoked. If the preconditions are met, the method executes normally. If noi
computation is interrupted and the user informed of the error condition. Error reportii
this kind is particularly useful while we’re developing, testing, and debugging a syste

Although Java will not automatically verify preconditions for us, the language
vides an assert statement® that can be useful. The assert statement allows us to disting
error handling from normal cases and get the error handling out of the way of the
rithm. The statement has two formats. The simpler form is

assert booleanExpression ;

The boolean expression is evaluated, and if it is true, the statement has no effect. If
false, the statement raises an error condition—an exception. This will stop execution o
program and display some information about the cause of the exception. We can use a.
statements to verify preconditions in the constructor as follows:

public Explorer (String name, Room location,
int annoyability, int tolerance)
assert annoyability >= 0;
assert tolerance >= 0;

this.name = name;

this.location = location;
this.annoyability = annoyability;
this.tolerance = tolerance;

}

If a client invokes the constructor with a negative tolerance argument, the program
terminate and we’ll get a message that looks something like this:

Exception in thread "main" java.lang.AssertionError
at mazeGame.Explorer.<init> (Explorer.java:16)
at mazeGame.ExplorerTest.runTest (TestExplorer.java::
at mazeGame.TestExplorer.main(TestExplorer.java:7)

(Exactly what the message looks like depends on the system we’re running and where
error occurred.)

1. The assert statement is available in Java version 1.4 and later.

iy
i
h)
dad
A

5.1 Programming by coniract

The second form of the assert statement is

assert hooleanExpression : expression ;

As before, the boolean expression is evaluated, and if it is true, the statement has no effect.
If it is false, the second expression is evaluated and the result incorporated into the excep-
tion message. For instance, we might write

assert tolerance >= 0
"precondition: tolerance (" + tolerance + "y >= 0";

Here the expression produces a String that includes the argument value of tolerance.
(Remember, + is concatenation in this expression.) If a client invokes the constructor with
a negative tolerance argument, the message will look something like this:

Exception in thread "main" java.lang.AssertionError:
precondition: tolerance (-10) >= 0
at mazeGame.Explorer.<init>(Explorer.java:16)
at mazeGame.ExplorerTest.runTest(TestEXplorer.java:l6)
at mazeGame.TestEXplorer.main(TestExplorer.java:7)

We tend to use assert statements sparingly in our examples. This is not to indicate a
style to be copied, but simply to reduce distractions in the examples.

Assertions are disabled by default

There is a difficulty with assert statements that leads some programmers to avoid them for
precondition testing. When the program is run, the interpreter, unless told to do otherwise,
simply ignores them. Assertions are explicitly enabled with command line switches as
explained in Appendix i.

Because of the possibility that a program might be run without precondition testing,
some programmers prefer to test preconditions explicitly with if statements. But as we
have said, an if statement implies an ordinary, expected case that must be handled by the
program. A precondition failure, on the other hand, is an error and occurs only in an incor-
rect program.

Assertions and postconditions

Of course, assert statements can also be used to verify postconditions. For several reasons,
though, verifying postconditions is less common than verifying preconditions. First, as we
shall see, a postcondition often says something about the state of the object after the
method is completed in terms of the state of the object when the method is called. Verify-
ing the postcondition in such a case requires saving the state of the object at the start of the
method.

Second, writing an assert statement to verify a precondition essentially says “I’'m not
willing to trust each client to do its job, and I'm not going to complicate my code by doing
the client’s job.” Writing an assert statement to verify a postcondition says “I don’t trust
myself to write correct code, but I do trust myself to write and test a correct postcondi-
tion.” We are much more likely to adopt the former attitude than the latter.

DrjJava: the assert statement

Open the file CombinationLock. java, located in 1ocks, in ch5, in nhText.
file contains a definition of the class CombinationLock as presented in the previous i

ter.

Note that the package name is ch5 . locks. We’ll incorporate the chapter numt

a package name from now on, so that classes with the same name but in different che
don’t become confused.

L.

Select Preferences... from the Edit pull-down menu. A Preferences window
appear.

Choose the category Miscellaneous from the Preferences window. Make sur
Enable Assert Statement Execution option is activated. If necessary, click the ¢
box, then press Apply and OK.

In the Interactions pane, create a CombinationLock with an invalid combination

> import chb5.locks.*;
> CombinationLock myLock = new CombinationLock (100C

and note the result.
Modify the assert statement, adding an expression:
assert 0 <= combination && combination <= 999
"bad combination: " + combination;
Note the condition is separated from the following expression by a colon. Save aj
recompile.

In the Inferactions pane, again create a CombinationLock with an invalid combin:
and note the result.

Further examples

Named constants in preconditions and postconditions

Recall that in the class TrafficSignal, we defined three named constants, GREEN, YEL:
and RED, to represent the different lights. The method 1ight was specified in Sectior

as

public int light ()
The current light that is on. Returns TrafficSignal . GREEN,
TrafficSignal .YELLOW, or TrafficSignal.RED.

We can express this a little more clearly with a postcondition:

public int light ()
The current light that is on.

5.2 Further examples 241

ensure:
this.light() == TrafficSignal.GREEN ||
this.light () == TrafficSignal.YELLOW ||
this.light () == TrafficSignal.RED

Named constants should be used in preconditions and postconditions rather than liter-
als whenever possible. Furthermore, though we occasionally resort to informal English
when writing preconditions and postconditions, standard Java syntax is preferable. There
is no chance for ambiguities creeping into our statements if we stick to the formal lan-
guage notation.

Specifying a command

Next, let’s take another look at the Explorer method takeThat, which we have specified
as:

public void takeThat (int annoyance)
Receive a poke of the specified number of hit points.

We’ve decided that we won’t require annoyance be bounded by our Explorer’s cur-
rent tolerance. But we might want to put a lower limit of O on the value of this argument.
(Unless we decide that some pokes can increase our Explorer’s tolerance: pokes with a
magic wand?)

public void takeThat (int annoyance)
Receive a poke of the specified number of hit points.

require:
annoyance >= 0

It is important to realize that if we don’t put this precondition on annoyance, the
method must be prepared to accept a negative argument. Furthermore, the documentation
must explain exactly what a negative argument means.

We might consider making the precondition annoyance > 0. After all, what’s the
point of a 0 valued poke? But unlike a negative valued poke, a 0 valued poke has a reason-
able meaning. It’s a poke that does no damage. We can understand it without additional
explanation. In general, our methods will be simpler and easier to use if we don’t arbi-
trarily exclude reasonable argument values, even if we don’t expect some of these values
to occur ordinarily.

What kind of postcondition can we write to describe to the client the effect of the
method? We want to indicate that the Explorer’s tolerance will decrease: that the value
returned by the query tolerance () after execution of takeThat will be less than the
value returned by this query before execution of takeThat. To do this, we must be able
to refer to the state of the Explorer when the method is invoked as well as to the state of
the Explorer when the method completes. It’s common for a command postcondition to
describe the state of the object after the command is executed in terms of the object’s state
when the command is invoked.

When writing a postcondition, we use “this” to refer to the state of the object
time the method completes, and “01d” to refer to the state of the object at the tin
method was invoked. The notation “o01d” is not a Java construct; it is a convention u
a comment specifying a precondition.

We might start by writing something like this:

ensure:
this.tolerance() =
old.tolerance() - annoyance

As noted, this.tolerance () refers to the tolerance property of the object whe
method completes, and o1d. tolerance () refers to the tolerance property whe
method begins. The condition says that the value returned by tolerance afte
method is complete will be the tolerance value when the method was called mint
argument value.

But this postcondition is not correct: if annoyance is greater than tolerance, |
ance will end up 0, and not 0ld. tolerance() - annoyance. We can correc
problem by writing:

ensure:
this.tolerance() ==
max (old.tolerance() - annoyance, 0)

This says that after the method competes, tolerance will be the larger of 0, and the sta
tolerance minus the argument.

The postcondition is now correct but almost certainly too strong, since it promise:
client exactly how the method is implemented. Suppose we decide later in the deve
ment that the Explorer should be able to do something to lessen the effect of a poke—
on a parka, for instance. Not only would the postcondition need to be changed, but sin
client’s correctness depends on our promises, any client that invoked the method we
need to be reexamined as well. We don’t want a client to depend on irrelevant impleme
tion details.

The following would probably be an adequate postcondition:

ensure:
this.tolerance() <= old.tolerance ()

It simply promises that the Explorer’s tolerance, after executing the method, will be
greater than it was when the method was called.

The definition of takeThat can be written as follows:
/ * %

* Receive a poke of the specified number of

* hit points.

* @require annoyance >= (
* @ensure this.tolerance() <= old.tolerance ()
*/

public void takeThat (int annoyance) {

5.2 Further examples 243

if (annoyance <= tolerance)

tolerance = tolerance - annoyance;
else
tolerance = 0;

}

Note that if the method is invoked with a negative annoyance, tolerance is
increased and the postconditions not satisfied. But if the client violates the preconditions,
the sever is under no obligation to comply with the postconditions.

Assigning responsibilities

As a final example, let’s look at the nim game class Pile from Section 3.2. Remember that
a Pile instance modeled a pile of sticks from which players in turn removed 1, 2, or 3
sticks. The command remove is used to remove sticks:

public void remove (int number)
Reduce the number of sticks by the specified amount.

There are at least three “what if” questions that come to mind when we read this spec-
ification:

what if number is negative? Is this legal? If so, what does this mean?
what if number is greater than the number of sticks remaining the pile?
what if number is not 1, 2, or 37

Each of these questions must be answered to complete the specification of the
method. In each case, we can write a precondition that excludes the case, and put the
- responsibility on the client. Or we can handle the case in the method.

For instance, we can write a precondition requiring number to be non-negative. Then
it’s the client’s responsibility to make sure that the argument is not negative and it’s a pro-
gramming error if the method is ever invoked with a negative argument. Or we can decide
that the method will accept a negative argument, in which case we must document clearly
what this means. But we must choose one or the other. If we don’t exclude negative argu-
ments, a client can legitimately invoke the method with a negative argument and expect
something reasonable to happen.

What should we do in each case? First, it does not seem meaningful for a client to
remove a negative number of sticks. (Maybe there should be a method for adding sticks to
the pile, but this shouldn’t happen in a method named remove.) A negative argument
would certainly be due to a program bug, and is not something we want to handle quietly.
We’1l exclude this possibility with a precondition:

require:

nunmber >= 0

(We might also wonder whether an argument of 0 should be allowed. But “remove 0
sticks” has a clear meaning, so we’ll accept a 0 argument.)

It’s not so obvious how to handle the second case, where number is greater t}
number of sticks remaining in the pile. We could say that if a client attempts to r
more sticks than remain in the pile, all the sticks are removed. But attempting to
more sticks than there are in the pile seems likely to be a client error. So we’ll exclu
case too, though handling it in the method could also be justified:

require:
number >= 0
number <= this.sticks /()

Finally, what if number is not 1, 2, or 3? The number of sticks than can leg:
removed by a player is determined by the rules of the game. Knowing the rules
game really doesn’t seem like it should be the responsibility of the Pile. So we
restrict the argument further.

Adding a postcondition, the complete specification reads as follows:

public void remove (int number)
Reduce the number of sticks by the specified amount.
require:
number >= 0
number <= this.sticks /()

ensure:
this.sticks () == old.sticks () - number

Note that in the precondition, the expression this.sticks () refers to the nt
of sticks in the pile when the method is invoked. In the postcondition, the expre
this.sticks () refers to the number of sticks when the method completes.

DriJava: preconditions and postconditions
Open the file Toy . java, located in folder exercise, in ch5, in nhText. The
does not model anything, but simply serves the exercise.
1. In the Interactions pane create an instance of the class:

> import chb.exercise.*;
> Toy t = new Toy () ;

2. Since each of the functions twice and increment take integer arguments
return integer values, they can be composed. That is we can write the expression

> t.next(t.twice (0))
> t.twice(t.next(0))

3. Try the expressions above. Find other values for which the composition is lega
evaluate them.

4. Now try other input values for which the composition is not quite legal, such as:

> t.twice(t.next (5))
> ft.next(t.twice(3))

5.3 Preconditions and postconditions: a summary of use 245

As you can see, the expressions are evaluated, but twice’s and next’s contracts are
broken in the process.

5. To avoid illegal compositions, add an assert statement to method twice.

assert 0 <= number && number <= 10;

Make sure that the preference Enable Assert Statement Execution has been activated.
(See page 240.) Save and compile.
6. In the Interactions pane, create a Toy instance as above, and key

t.twice(t.next(5))

Read the error message produced.

7. Add the appropriate assert statement to next.
Save, compile, and evaluate t.next(t.twice(3)).

Preconditions and posiconditions: a summary of use

Preconditions

Preconditions must be satisfied by the client when invoking the method. There are several
situations in which preconditions are used.

o Most often preconditions constrain the possible values that the client can provide as a
method or constructor argument. This is the case in the Explorer constructor and
takeThat command considered above. The precondition for takeThat, for example,
requires that the client provide a non-negative argument. Remember that if an argument is
not constrained by a precondition, the method must be prepared to accept any value of the
specified type. Furthermore, the method must explicitly document its actions for all possi-
ble arguments.

o QOccasionally, preconditions constrain the order in which methods can be invoked or
require that the server be in a certain state before a given method can be invoked. For
instance, it might be necessary that a door be unlocked before it can be opened, or that an
automobile be started before it can be moved. Modeling a vending machine, enough
money must be entered before an item can be retrieved. In a word processor, text must be
cut before a paste can be requested.

In such situations the server will often explicitly handle the “wrong state” case, rather
than requiring the client to verify that the server state is correct. For instance, suppose a
door must be unlocked before it can be opened. The design choices are to require that the
door be unlocked before an open operation can be attempted—client’s responsibility,
specified by a precondition; or to let the server handle an attempt to open an unlocked door
by responding in an appropriate way—for instance, by simply not opening the door. In the
first case, it is a program error for client code to attempt an open operation without verify-
ing that the door is unlocked. In the second case, it 1S not.

If a precondition requires the server to be in some particular state, it must be po
for a client to verify the correctness of the server’s state. For instance, if the open ope
requires that the door be unlocked, it must be possible for a client to determine th
door is unlocked.

Query postconditions

When an object responds to a query, it does not change state. It simply provides a va
the client. Thus query postconditions inevitably say something about the value rett
We sometimes use the term “result” to refer to the value returned by the query
instance, we might specify the Counter method currentCount in either of the fo
ing ways:

public int currentCount ()
Current count; the number of items counted.

ensure:
this.currentCount () >= 0

public int currentCount ()
Current count; the number of items counted.

ensure:
result >= 0

Command postconditions

Commands result in a change of state. Thus command postconditions typically des
the new state of the object, its state after execution of the command. The new state is «
compared to the previous state, the state of the object when the command was invc
For this reason, it is convenient to have a notational convention for referring to the sta
the object when the command is invoked. We use “o01d” for this purpose, as illusti
above with the Explorer method takeThat.

Constructor postconditions

Not surprisingly, constructor postconditions typically describe the initial state of the ne
created object. This is the case with the Explorer constructor given above.

Preconditions and postconditions are part of the specification

It is important to remember that preconditions and postconditions for public methods
part of an object’s specification. As such, they should never mention private impleme
tion components. The following specification of the Counter method reset, for insta:
is incorrect. The Counter instance variable count is part of the implementation: it is
part of the object’s specification, and is meaningless to the client.

5.3 Preconditions and postconditions: a summary of use 247

public void reset ()
Reset the count to 0.

ensure:
X count == 0 This is not correct! count is private,

The method currentCount, however, is part of the public speciiication of the
class. The following is the proper way to express the postcondition:

public wvoid reset ()
Reset the count to O.

ensure:
this.currentCount() == 0

Furthermore, the server must provide an adequately rich set of features so that a client
can verify preconditions in a straightforward manner. In defining the Date constructor in
the previous chapter, for instance, we required that the day, month, and year arguments
represented a legal calendar date. This involves a nontrivial calculation, and it would be
inappropriate for every Date client to include an algorithm to do this. Thus we added the
method isLegalDate to the class.

Implied preconditions and postconditions

There are two situations in which preconditions and/or postconditions are generally
assumed and not stated explicitly. The first two arguments of the Explorer constructor, for
example, reference a String and a Room. Recall from Section 1.5 that there is a special null
value, denoted by the literal null, that doesn’t reference any object.

We assume that an argument value cannot be null unless the specification explicitly
allows it. We also assume that the value returned by a query cannot be null unless the spec-
ification explicitly allows this possibility. Thus the Explorer’s constructor precondition is
equivalent to

* @require name != null

* location != null
* annoyability >= 0
* tolerance >= 0

We rarely write these non-null requirements explicitly in the specification.
Second, the type of a numeric property implies some expected “range of reasonable
use.” For example, the query currentCount of a Counter is specified as

public int currentCount ()
The number of items counted.

ensure:
this.currentCount () >= 0

The return type (int) determines an upper bound on the returned value, namely
2,147,483,647. Thus the counter can only be legitimately incremented if its value is less
than this limit:

public void incrementCount ()
Increment the count by 1.

require:
this.currentCount () < 2147483647

The underlying assumption, however, is that instances of this class will only be
in situations where the count will not exceed the range of the type int. Thus we
rarely write a precondition like the one shown above. (What happens if the count is
mented past 21474836477 See Exercise 5.9.)

In defining the classes TrafficSignal and PlayingCard in Chapter 2, we used named
stants to define what are essentially types with only a few values. For instance, ther
three possible values for a TrafficSignal light: green, yellow, and red. To represent -
values, we used integers named TrafficSignal.GREEN, TraficSignal.Y
LOW, and TrafficSignal . RED. Similarly, there are four possible values for a Pla
Card suit, and thirteen values for a PlayingCard rank. In each case, we used intege
represent these values.

One problem with this approach is that there is no way for the compiler to ensurt
a client uses appropriate integers for these values. There is nothing to prevent a client
writing, for example,

new PlayingCard (27, -4)

Of course, we can check at runtime with an assert statement:

public PlayingCard (iat suit, int rank) {
assert suit == SPADE || suit == HEART ||
suit == DIAMOND || suit == CLUB;

But compile time checking, when we can achieve it, is much more effective than rur
checking.

Another problem is that there is no way to prevent the client from making use ¢
actual integers used to represent values. For instance, a client might check to see if a
is red by doing

if (card.suit() == 2 || card.suit() == 3)

even though the fact that 2 and 3 are used to represent diamonds and hearts is not pi
the class specification.

An alternative approach is to use an enumeration. An enumeration is a class hav
small number of fixed, named, instances. We can define an enumeration classes fc
class PlayingCard as follows.

5.4 Enumeration classes 245

public e¢lass PlayingCard {

public enum Suit {clubs, diamonds, hearts, spades}
public enum Rank {two, three, four, five, six,
seven, eight, nine, ten, jack, queen, king, ace}

The format of the definition includes the keyword enum, followed by the name of the
class, followed by a list of class instances.

These definitions define classes PlayingCard.Suit and PlayingCard.Rank. Playing-
Card.Suit comprises four objects, named clubs, diamonds, hearts, and spades.
Playing Card.Rank comprises thirteen objects named two, three, efc. These objects are
essentially “named constants.” PlayingCard. Suit.clubs, for example, is a named
constant in much the same way as PlayingCard.CLUB in our original definition of
PlayingCard. However, PlayingCard.Suit.clubs denotes a PlayingCard.Suit
object, while PlayingCard.CLUB denotes an int.

o T T

PlayingCard

Suit

static Suit clubs

static Suit diamonds

static Suit hearts

PIPIRIR

static Suit spades

Figure 5.1 The objects of the class PlayingCard.Suit.

We can now define the PlayingCard constructor and queries in terms of the classes
Suit and Rank as shown in Listing 5.1. A client is required to provide PlayingCard.Suit
and PlayingCard.Rank arguments when invoking the constructor:

new PlayingCard (
PlayingCard.Suit.clubs, PlayingCard.Rank.ace);

Furthermore, since the enumeration classes and instance identifiers are static, they can
be imported into a compilation unit with a static import statement. (See Section 3.7.3.) If
the client compilation unit includes

import static PlayingCard.*;

Listing 5.1 The class PlayingCard

public class PlayingCard {

public enum Suit {clubs, diamonds, hearts, spades}
public enum Rank {two, three, four, five, six, seven,
eight, nine, ten, jack, queen, king, ace}

private Suit suit;
private Rank rank;

public PlayingCard (Suit suit, Rank rank) {
this.suit = suit;
this.rank = rank;

}
public Suit suit () {
return suit;
}
public Rank rank () {
return rank;
}
public String toString () {
return rank + " of " + guit;
}

the constructor can be invoked as
new PlayingCard(Suit.clubs, Rank.ace) ;
If the client compilation unit includes
import static PlayingCard.Suit.*;
import static PlayingCard.Rank. *;
the constructor can be invoked as

new PlayingCard(clubs, ace):;

The method toString

TMxemesa@ﬁdnwﬂmdspmdﬁhwdﬂnenmnmaﬁmlmﬁmnﬁ&ThenwﬂmdtoStrL
is defined to return the name of the object as a String. For instance,

PlayingCard.Suit.clubs.toString() = "clubs"

i)
ol

5.5 Summary 251

This can be helpful in testing and debugging. With our original PlayingCard class,
card.suit () returns an int. The statement

System.out.println("suit: " + card.suit());
produces something like

suit: 1
Using enumerations, this statement produces a more readable

suit: clubs

The method compareTo

The elements of an enumeration are ordered, with the ordering established by the order in
which they are declared. The method compareTo can be used to determine the relative
order of two objects.

public int compareTo (EFnumClass obj)
Compare this enum constant with the specified object for order. Returns
a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object. Enum constants are com-
parable only to other enum constants of the same enum class. The natu-
ral order implemented by this method is the order in which the constants
are declared.

For instance, if card is a PlayingCard,

card.suit () .compareTo (PlayingCard.Suit.diamonds)

returns a negative value if card. suit () is clubs, zero if it is diamonds, and a posi-
tive value if it is hearts or spades. Similarly, the ranks of cardl and card?2 can be
compared by invoking

cardl.rank () .compareTo (card2.rank ())

and seeing if the result is negative, zero, or positive.
It is also possible to define additional features for an enumeration. See Supplement d
for details. ‘

Summary

In this chapter, we introduced a programming style called programming by contract. The
basic idea is to make explicit the respective responsibilities of client and server in a
method invocation. To this end, the invocation of a server method by a client is viewed as
involving a contract between the client and the server. The server promises to perform the
action specified by the method and to ensure that the method’s postconditions are satisfied,
but only if the client meets the preconditions. Preconditions are the client’s responsibility;

postconditions are the server’s. If the client fails to meet the preconditions, the cont
void: the server is not obligated to behave in any specific way.

Using this approach, it is a programming error for a client to invoke a method w
satisfying the method’s preconditions. We talk more about errors in Chapter 15
versely, if the client satisfies the preconditions, the server must accomplish the aci
specified.

Preconditions can be verified using Java’s assert statement. If the boolean expr
in the assert statement is true, the statement has no effect. If it is false, an error exc
occurs and the program terminates.

Preconditions most often constrain the values a client can provide as argument
conditions for a query generally say something about the value returned. Postcons
for a command generally describe the state of the object after the command is com
in terms of the state before the command was begun.

SELF-STUDY QUESTIONS

5.1

52

5.3

54

5.5

What is “programming by contract”? For what language constructs are contracts de
How is the contract between client and server specified?

How does programming by contract help manage complexity and improve efficienc
software system?

Compare how the system deals with bad data entered by the user and illegal argt
passed to a method.

Indicate whether each of the following statements is true or false.

a. Inprogramming by contract, the server is always required to meet specified pos
ditions.

b. In programming by contract, the server should verify client-provided argument:
correct them if possible.

c. Java’s runtime system checks the validity of preconditions and postconditions.

Consider the class JetCalibrator partially given below. What this class models
important.

1. public class JetCalibrator {

2. /*F

3. * @ensure -5 <= this.jetSetting() &&
4. * this.jetSetting() <= 5

5. */

6. public int jetSetting ()

7' /*k*k

8. * @require -3 <= offSet && offSet <= +3
9. */

10. public void adjust (int offSet)

5.6

5.7

Seli-study questions 253

71 /**

12. * @ensure this.jetSetting() >= 0

13. */

14. public wvoid normalize ()

15. private int jet; // invariant:

16. // =5 <= jet && jet <= +5
}

Which of the following statements are true?

a. Ensuring that the condition of line 8 holds is the responsibility of the client.

b. In a correct program, the method adjust will never be invoked with an argument
of 4.

¢. The implementation of the method adjust must check the value of of £Set in case
the user enters a value that is out of range.

d. The condition of line 12 implies that the server will never execute the method noxr-
malize when the property jetSetting is negative.

e. The condition of line 16 implies that the value of the instance variable jet will never
be 6.

Let ¢, 1, and j be variables defined as follows:

JetCalibrator ¢ = mnew JetCalibrator(...);

int 1;

int j;
where JetCalibrator is the class sketched in Exercise 5.5. Which of the lettered statements
are true after the following sequence is executed?

i1 = c.jetSetting() ;
c.normalize();
j = c.jetSetting();
a. 1 and j are guaranteed to have the same value.
b. 1icanbe -5.

c. J canbe -5.

Given the variables of Exercise 5.6, suppose the following statements are executed:
1= 4;
c.adjust (i) ;
j = c.jetSetting();

Which one of the following are true?

a. J will be 4.

b. Ttis not possible to tell what will happen.

5.8 Write an assert statement to verify the precondition of the method takeThat, sh
page 242.

5.9 The following are specifications for constructors and methods in a Counter class. (
their completeness.

(a) public Counter (dint a, int b)
Create a new Counter.

(b) public void increment ()
Increment this Counter.

(c) public void reset ()
Reset this Counter to the starting value.

ensure:
this.count () == Counter.STARTING_VALUE

5.10 The class CombinationLock defined in Section 4.5 includes a method close, spec

public void close ()
Lock this CombinationLock.

and an instance variable i sOpen, defined as

private boolean isOpen; // the lock is unlocked

Here are three implementations of the method close:

(a) public void close () {
isOpen = false;

}

(b) public void close () {
assexrt isOpen;
1sOpen = £alse;

}
(c) public void close () {
isOpen = !isOpen;
}

What preconditions. if any, should be added to the method to make each of these it
mentations correct?

ICISES

5.1 Add preconditions and/or postconditions as appropriate to the balls and strikes
class of Exercise 4.12.

52

53

54
5.5

5.6

5.7

5.8

59

5.10

Exercises 255

Add appropriate assert statements to the Pile method remove, as specified on page 244.
Write and run a test in which the precondition is violated and note the error message pro-
duced.

Add preconditions and postconditions to the Rectangle class specified in Listing 3.4. Add
assert statements to the implementation. Modify the RectangleDisplay program so
that it attempts to create an illegal Rectangle. Run the program and observe the error mes-
sage generates.

Add preconditions and postconditions to the class PlayingCard, specified in Listing 2.5.

Write assert statements that explicitly verify that the name and location arguments of the
Explorer constructor are not null.

Write assert statements to verify the preconditions for the Date constructor, as defined on
page 202.

Suppose that for the Employee method pay of Exercise 4.7, hours and rate are param-
eters rather than instance variables. That is, suppose the method is specified as

public double pay (int hours, double rate)

Write a complete specification, including reasonable preconditions and postconditions, for
this method.

Assume that the method dayOfWeek takes a day of the year and year as arguments, and
returns the day of the week. That is, dayOfWeek is specified

public int dayOfWeek (int day, int year)
and dayOfWeek (51,1999) will tell us that the 51st day of 1999 was a Saturday.
Assume that the class Date has named constants defined for each day of the week:

public static £inal int MONDAY =

Write a complete specification, including reasonable preconditions and postconditions, for
this method.

Write, compile, and run a simple program with the following main. Explain the results.

public static wvoid main (String[] argv) {
int 1 = 2147483647;
i =1+ 1;
System.out.println("i = " + 1i);

}

Suppose we want to build a maze game in which Denizens, when poking an Explorer,
sometimes magically increase the Explorer’s tolerance. We represent a magic tolerance-
giving hit by furnishing a negative argument to the takeThat method. Furthermore, we
allow an Explorer to have deficit tolerance, also represented by a negative value. An
Explorer with deficit tolerance can be revived only by a tolerance-giving poke. Can we
reuse the class Explorer as it exists in this new game? Explain your answer.

5.11

Can an assert statement be used to verify query postconditions? Why do you think pr
ditions are verified far more often than postconditions?

Can an assert statement generally be used to verify command postconditions? Why or
not?

Given the definition of PlayingCard in Listing 5.1, implement a method
boolean higherThan (PlayingCard cl, PlayingCard c2)

that returns true if c1 is higher than ¢2, where cards are first compared by rank (an a
higher than a king, a king higher than a queen, and so on), and cards of equal rank arx
compared by suit (a spade is higher than a heart which is higher than a diamond whic
higher than a club).

ANSWERS TO SELF-STUDY QUESTIONS

5.1

52

53

5.4
5.5
5.6
5.7
5.8
5.9

Programming by contract is a programming style in which the invocation of a meth
viewed as a contract between client and server, with each having explicitly stated resp
bilities. Contracts are defined for methods and constructors. Contracts are specified b
doc comment preceding the method or constructor. In particular, preconditions (req
detail responsibilities of the client, postconditions (ensure) detail responsibilities o
Server.

By localizing responsibilities, the number of methods that must contain code to verif'
validity of data is minimized. The result is reduced complexity and improved efficien:

It is the responsibility of the user interface subsystem to interact with the user and pre
bad data from being entered. Sometimes this is easy, for instance, if the user enters a r
when a data is expected. Sometimes this is impossible, for instance, if the user keys
rather than “8” when entering the price for a can of beans. A client invoking a sers
method with an illegal argument, however, is the result of a program bug. We can
hope that the program will terminate with an error message.

All three statements are false.

(a) true (b) true (c) false (d) false (e) true
(a) false (b) true (c) false

(D) is true.

assert annovance >= (;

(a) The specification adds nothing. What are the parameters? What is the initial valu
the Counter?

(D) Increment by how much? One would guess one, but it would be better to be explic:
No preconditions imply that the method can be invoked at any time.

(c) Specifications are satisfactory. No preconditions imply that the method can be invo,
at any time.

Answers to seli-study quesiions

5.10 (a) No preconditions are needed.

(b) and (c) both need this.isOpen () as a precondition. (b) will fail if this precondi-
tion is not satisfied, and (c) will leave open a lock that is already closed. (This is probably
not a reasonable precondition. There is no obvious reason for requiring that the client to
make sure that the lock is open before attempting to close it.)

