
Object-Oriented Design 

COMP 2000 

Spring 2024 

Lab 8 Supplement 2 

Once you have a ship displayed on the screen you will want to get it to move and turn. In order to 
accomplish this you will need to utilize the fact that the Asteroids class implements the KeyListener 

interface, providing implementations of keyTyped(), keyPressed(), and keyReleased(). 

(see https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyListener.html). 

• The three methods of KeyListener that are required in order to implement that interface each 

respond to keys on the keyboard in different ways. Even though we will leave keyTyped() empty, 

it must be added to satisfy the conditions of the KeyListener interface. 

• You will have to decide which keys on the keyboard you want the user to press to control your ship 
(if you select something other than the arrow keys, please make sure you document that clearly 
so that I don’t have trouble testing your code). You will need a key to move forward, one to turn 
right, and one to turn left. To keep track of which key is currently being pressed, add boolean 
instance variables to your Asteroids class for the forward, and left and right turn keys. Each 

variable will be set to true if the corresponding key is being pressed, and to false if it’s not. 

• All of the KeyListener methods take a KeyEvent object as their parameter. This object 

contains information about which key was pressed or released. You can get the key code, which is 
a number representing the key pressed or released by calling the non-static method 
getKeyCode() for the KeyEvent instance that was passed in. The list of the constants 

corresponding to the key codes is on the KeyEvent API page. Fill in the keyPressed() and 

keyReleased() methods so that when the forward key is pressed or released, its corresponding 

boolean variable changes appropriately. 

• Note: the Asteroids game is registered as a KeyListener in the Asteroids constructor 

method with the following: addKeyListener(this); 

Now let’s get moving: 

• Because we coded the KeyListener methods to update a boolean instance variable of 

Asteroids, we need to create a mechanism that allows this information to get passed along to 
your ship. In order to do this we need to add a new method to Ship that can be called from 

Asteroids that will store the information in a boolean instance variable of Ship. The signature 

of this method should be public void thrust(boolean value); 

• Now in the paintComponent() method of Asteroids add a call to ship.thrust() passing 

it the value of forward. Also add a call to ship.update(), for reasons that will be clear in the 

next step. 

• Edit the method public void update() in your Ship class. This method will change the 

position of your ship if the forward key is being held (which should now be locally stored 
information, thanks to the thrust method). To do this, think about what variable holds your 

ship’s current position? How do you access the x coordinate and y coordinate of its current 
position? 

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyListener.html


• To change the rotation of your ship if either of the turn keys are being held you should add logic 
to the paintComponent() method of Asteroids. Depending on the values of the boolean 
variables for right and left you should make calls to ship.rotate(). See the source code for 

Polygon where this method is defined. 

• When you run the program you should see the ship move when you press the forward key and 
then stop when you release the key. If you hold forward long enough, the ship will disappear off 
the edge of the screen. 

What remains is to tweak the code to make sure that the ship moves the way we want. 

• First, when the ship goes past the edge of the screen it should appear to come back into the screen 
from the opposite edge (left/right and top/bottom). In order to do this you need two things: (1) 
you need to know the dimensions of the window (how will ship know this?); and (2) you need to 
know how to detect when the ship goes off screen and how to adjust the coordinates to perform 
the wrap-around behavior. 

• Next, it is likely that your ship continues to move in the same direction regardless of the direction 
it is facing. In order to have it move in the direction it is facing you need to use some trigonometry 
make sure you are incrementing the x and y coordinates the correct amount to go in the desired 
direction. Specifically, if you are currently incrementing the x and y coordinates by the same 
amount, you need to instead multiply the increase in the x coordinate by 
Math.cos(Math.toRadians(rotation)) and multiply the increase in the y coordinate by 

Math.sin(Math.toRadians(rotation)). 

• Finally, rather than having the ship move linearly (move by a constant distance for each time 
interval in which the forward button is pressed), we would like to simulate zero-gravity 
acceleration. This will allow the forward key to act as an accelerator rather than a go/stop key. 
The code for this uses the accelerate() method in the original Lab 8 handout. You will modify 

the update() method to increment the x and y using the instance variable velocity rather than 

a hard-coded constant. 

Now that you have a fully operational ship, you can use what you learned so far to create another subclass 
of Polygon called Asteroid. 

• Just like you instantiated a Ship object in the constructor for Asteroids, you can also 

instantiate a List of Asteroid. It should be declared like this: 

private List<Asteroid> asteroids = new ArrayList<Asteroid>(); 

• Then in the paint() method of Asteroids call each of the asteroids’ paint() methods just 

like you did with ship. 

• Make sure that you place each asteroid in a different location on the screen. You can also give each 
one a fixed rotation and velocity. 

 
All work must be done individually. Never look at someone else's code. Please refer 
to the course policies if you have any questions about academic integrity. If you have 
trouble with the assignment, I am always available for assistance. 


