
Object-Oriented Design

COMP 2000

Spring 2024

Lab 8 Supplement 1 (version 2)

First, some early guidance:

• You should look at the code in class Game and try to understand what it is doing as best you can.

Ask questions! However, you should NOT edit this class in any way.

• If you look at the code for Polygon you will see that it makes significant use of Point2D.Double
from the java.awt.geom package. You should definitely look up the API for this and read about

this class so you understand what it represents and how it works.

• Asteroids is a subclass of Game. You will be adding instance (state) variables, modifying its

constructor and paintComponent() method, and possibly adding additional utility methods.

• The main() method calls the constructor for Asteroids, which calls the method paint()

which calls the method paintComponent(). There are some details about how the constructor also
sets up a timer to call repaint(), which in turn calls paint(), which in turn calls

paintComponent() which could be important for debugging, so they are explained in the next

paragraph, but at a high level, you can think of what is happening in the code as:

Asteroids a = new Asteroids();

a.paint(...)

a.paint(...)

a.paint(...)

a.paint(...)

.

.

.

• This implicit loop of calling paint executes 3o times every second, allowing each call to paint to
serve as a single frame in an animated sequence. This is what gives you the ability to create ships
and asteroids, etc., that move over time.

• This paragraph will explain the details of what is actually happening when the Timer set up in the
constructor calls repaint(), which is a method defined by Java in the class Component, which

is the superclass of Container, which is the superclass of JComponent, which is the superclass
of JPanel, which is the superclass of Game. So the paintComponent method of Asteroids

will serve as the effective ‘main method’ of your game: this is where all the action occurs.

Now we are ready to outline the first steps:

• The first thing you should do is create the class Ship that is a subclass of Polygon.

o It is ok to import individual classes from java.awt as you need them, but do not import
java.awt.*

o You will need a constructor that has the same position and rotation parameters in its

signature as Polygon’s constructor. It should call super() as its first instruction. This

means that it is up to the ship to specify it’s own shape and pass this to super(). One

easy way to do this is to have a private static method that returns the list of points that
represents the ship. In this method you should instantiate and populate an array of points
with the coordinates that you want to use to represent the shape of the ship.

o You will also need a paint() method that takes a single Graphics brush parameter.

This is the method that will display the ship on the canvas.

o You will also need an update() method that is parameterless and returns void. You

should leave this method with an empty body (just a pair of curly braces) for now. We will
implement this method in supplement #2.

o Before you draw the ship, make sure the paint method is set up correctly by using the
drawLine method in Graphics to draw a single line between the coordinates (100,200)

and (300,400). To do this, type brush.drawLine(100,200,300,400); in the paint

method in Ship. Once you see that it works you can comment out this line.

o Drawing the ship will require two steps. The Polygon class has been provided with a
method fill() method that allows you to draw this interior of a polygon. It also has an
outline() method that will draw the boundary of the polygon. If you notice, these

methods cast the brush to a Graphics2D brush and then calls Graphics2D methods to

do the drawing. It would be a good idea to look up the API for Graphics2D and study it.

• In order to test your ship class you will need to modify Asteroids to act as a client of Ship.

o Declare a Ship instance variable.

o In the constructor for Asteroid, build a ship object referenced by this variable. The initial

position of the ship should be centered on the screen (so a point with coordinates (400,
300), but don’t hard code these numbers in; rather, figure out how you can get the window
dimensions divide those in half), and should be oriented facing east.

o In the paintComponents() method for Asteroid, call the paint() method on the ship.

All work must be done individually. Never look at someone else's code. Please refer
to the course policies if you have any questions about academic integrity. If you have
trouble with the assignment, I am always available for assistance.

