COMP 1600 Fall 2025
Project 3: Ride the Wave

For this project you will write a program that processes audio files based on user input. You might be
familiar with audio editing tools such as SoundForge or Cool Edit Pro. The program you will write will
have some of the same functionality, only using text input commands instead of a GUI.

= Background
= Overview
= Sound Processing

= Samples

* Turnlin

= Grading
Background

This project is based around the manipulation of audio data inside a program. As you probably
known from physics classes, sound travels as a wave. We can visualize this wave as something like a
sine function.

Here is an image of several waves with different frequencies. Each is what is called a pure tone. At the
top, the frequency is lower, making the equivalent note lower in pitch. The pitch of the notes
increases as the waves go down the page. Of course, the representation of real sounds are more
complex. Real sounds have chaotic looking wave forms because much more is going on than just a
single pure tone, as shown below.

http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#background
http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#overview
http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#processing
http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#samples
http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#turnin
http://faculty.otterbein.edu/wittman1/comp1600/projects/project3.aspx#grading

Of course, computers can't deal with nice, smooth waves. To record or manipulate a sound in a
computer, you need to turn the wave into a series of values. This is done with a process called
sampling. Sampling means that the wave is chopped up into lots of equal sized time divisions. For
each division, we pick one value to represent the wave at that point. In this way, we can approximate
the wave with a series of numbers. Below is a picture showing a tiny section of a wave form. Each
small blue box represents the sample value of that wave.

With CD quality sound, there are 44,100 samples per second. That's why CD audio takes up so much
space. Every single second has 44,100 numbers giving the height of various parts of a wave.

The StdAudio library developed by two Princeton professors lets us easily manipulate CD quality
audio, but not MP3's. MP3's use a number of mathematical and psycho-acoustic techniques to use a
lot fewer numbers to represent the waves. So, we're going to stick with CD quality audio, stored in
the form of . wav files on your computer.

The StdAudio library provides a very easy way to load and save . wav files. When they are loaded,
they will be represented as an array of double values. Each value represents one sample. So, for a
song that is 3:56 long, the array will contain 10,407,600 double values. For this reason, we are going
to stick to small . wav files. In the format used by StdAudi o, each value in the array is between -1.0
and 1.0. Thus, a maximum volume sound has peaks at 1.0 and -1.0. A completely silent sound
represented by samples at 0.

Overview

In this project, you will use your knowledge of loops, arrays, and the StdAudio library to make a
program that takes an audio file as input and then applies a number of audio processing tasks and
effects to the file. Each task is indicated by a command such as p or n. Some commands require

additional information to be read. All of these commands are given as input typed by the user. There
is no limit to the number of commands that can be provided, and they should be processed in order.

There are 7 tasks in total, but each one is relatively simple. These tasks are:

Play P Play the audio
Reverse r Reverse the audio
Increase speed S Speed up the audio by a specific factor
Add noise n Add a specified amount of white noise to the audio
Change volume v Scale the volume of the audio up or down
Output O Output the current version of the audio to a specified file
Quit g Quit the program

You must download StdAudio. java from here. You can either save it in your project src folder
once you have created your project or you can add a StdAudio class to your project and paste the
textin.

Sound Processing

Reversing Sounds

To reverse a sound, take the array of double values representing samples and reverse the order of
its elements. The new array will effectively contain the audio backwards.

First, create a new double array whose lengthis length/factor, where length is the original
length and factor is the amount by which you are speeding up the audio. Then, loop through the
new array filling it with values from the original array. Element 1 in the new array will correspond to
element i *factor from the old array. That s, if factor is 2, you will use every other value from
the original. Obviously, the index in the old array that you calculate will be a double. You will need
to castittoan int to use it. Anything other than very small values of factor will produce audio
that is so fast as to be unlistenable. If you write your code correctly, it should be able to speed

http://faculty.otterbein.edu/wittman1/comp1600/projects/StdAudio.java

up and slow down sounds. A sound will be sped up with a factor greater than 1 and slowed down
with a factor less than 1.

Adding Noise

Noise is essentially just random values added to the audio. For each value in the array of audio
samples, add a random number between —amount and amount, where amount is the value
specified by the user. Make sure that no value is greater than 1.0 or less than -1.0 after noise is added.

Ghanging the Volume of Sounds

Multiply each value in the array of audio samples by the scale supplied by the user. If the scale is
larger than 1, the noise will get louder. If the scale is smaller than 1, the noise will get quieter. A value
of 0 would make the sound completely inaudible. Make sure that no sample in the array is greater
than 1.0 or less than -1.0 after scaling.

Here is a list of 24 sample sounds we have included for your use.

= amazing.wav * insane.wav

= breakbeato.wav = milkshake.wav
= cuckoo.wav = nature.wav

= coffee.wav = obtuse.wav
= compute.wav = pacman.wav
= Crazy.wav = pain.wav

» defeat.wav * prunes.wav
= doomed.wav = saber.wav

= doorbell.wav = secret.wav

= eol.wav = shiny.wav

= eva.wav = whoa.wav

= hal.wav = world.wav

Note: You will need to put these sounds in your project directory of your project for your program to
access them. They should be in the top level of the project directory, not in
the out or src directories.

Your program should prompt the user to for the name of a wav file. After that, you should repeatedly
prompt the user for commands until he or she chooses the quit (q) option.

http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/amazing.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/breakbeato.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/cuckoo.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/coffee.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/compute.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/crazy.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/defeat.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/doomed.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/doorbell.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/eol.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/eva.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/hal.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/insane.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/milkshake.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/nature.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/obtuse.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/pacman.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/pain.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/prunes.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/saber.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/secret.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/shiny.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/whoa.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/world.wav

For example, the following sample program execution loads whoa . wav, plays the file without
changes, reverses the sound, speeds up the sound by a factor of 1.7, adds a 0.1 amount of noise,
scale the volume by a factor of 1.4, play the song another time to hear how all the changes have
gone, saves the current audio to the file name whoaChanged.wav, and then quits.

Enter wav file name: whoa.wav

Select command (p, r, s, n, v, 0O, d): p
Playing sound

Select command (p, ¥, s, n, v, 0O, g): r
Reversing sound

Select command (p, ¥, s, n, v, 0O, J): s
Speed up by how much? 1.7
Speeding up sound

Select command (p, ¥, s, n, v, O, g): n
Add how much noise? 0.1
Adding noise

Select command (p, r, s, n, v, 0, q): V
Scale volume by how much? 1.4
Scaling volume

Select command (p, ¥, s, n, v, O, d): p
Playing sound

Select command (p, ¥, s, n, v, 0O, d): O
Save to what file name? whoaChanged.wav
Saving file

Select command (p, ¥, s, n, v, 0, d): g

Here you can download the final version of whoaChanged.wav to give an example of what the
sample from above would sound like.

Here is an example of each command. We have included an audio example using only a single effect
flag to make a helpful example, but your program should handle any number of commands.

Play the current
audio as it is, with
the accumulated Enter wav file name: coffee.wav
Play p chosen effects. Select command (p, r, s, n, v, 0, d): P No change in audio
This option uses Playing sound
aplay () method
from StdAudio.

Enter wav file name: shiny.wav
Reverse the audio Select command (p, ¥, s, n, v, o,): r

R . that it pl Reversing sound
everse Sothatitplays Select command (p, r, s, n, v, 0, g): O
backwards. Save to what file name?

shinyReverse.wav

shinyReverse.wav

http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/whoaChanged.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/shinyReverse.wav

Speed up the

audio byaspeC|f|c Enter wav file name: pain.wav

factor. Note that Select command (p, r, s, n, v, 0, q): s
Increase you will have to Speeel W By mew aEenl 2.0 .
s Speeding up sound painSpeed.wav
Speed Promptthe user Select command (p, ¥, s, n, v, 0, d): O
foradouble as Save to what file name?

painSpeed.wav

the speed up
factor.

Add a specified

amount of white Enter wav file name: pacman.wav
noise to the audio. Select command (p, r, S, n, v, o, g): n

Add Note that you will Add.how Im.JCh noise? 0.5 .
R n Adding noise pacmanNoise.wav
noise have to promptthe Select command (p, r, s, n, v, O, d): O
user for Save to what file name?

acmanNoise.wa
adoubleasthe ° TeeLmay

amount of noise.

Scale the volume

of the audloupor Enter wav file name: breakbeato.wav
down. Note that Select command (p, r, s, n, v, 0, g): Vv

Change you will have to Scalg volume by how much? 0.5
v Scaling volume breakbeatoVolume.wav
volume promptthe user Select command (p, r, s, n, v, 0, gq): O
foradouble to Save to what file name?

breakbeatoVolume.wav
know how to scale

the volume.

Output the current
version of the
audiotoa
specified file. Note
thatyou will have Enter wav file name: milkshake.wav
to prompttheuser Select command (p, r, s, n, v, o, 9): O

fora String to Save to what file name?
rename.wav

No change in audio

Output o

know the new file
name. This option
uses the save ()
method
from stdaudio.

Quit q Quit the program.

http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/painSpeed.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/pacmanNoise.wav
http://faculty.otterbein.edu/wittman1/comp1600/projects/sounds/breakbeatoVolume.wav

Turnn

Your IntelliJ project should be called Project3, but the class you create inside should be
called AudioProcessor. Upload the AudioProcessor. java file from
the Project3\src folder wherever you created your project to Brightspace.

All work must be submitted before Friday, October 24,2025 at 11:59 p.m. unless you are going to use

a grace day.

All work must be done individually. You may discuss general concepts with your classmates, but it is
never acceptable for you to look at someone else's code. Please refer to the course policies if you
have any questions about academic integrity. If you have trouble with the assignment, | am always
available for assistance.

Grading

Your grade will be determined by the following categories:

Play
Reverse
Increase speed
Add noise
Change volume
File output

Style and comments

10%

20%

20%

15%

15%

10%

10%

https://otterbein.brightspace.com/

