
Solving the Time-Independent Schrödinger Equation∗

David G. Robertson†

Department of Physics and Astronomy

Otterbein College, Westerville, OH 43081

(Dated: December 14, 2009)

Abstract

Approaches for numerically solving the time-independent Schrödinger equation in one dimension

are discussed. Possible simulation projects include solving the TISE for various potentials, testing

the validity of stationary state perturbation theory, and developing a simple model of covalent

bonding. Some background on numerical techniques for integrating differential equations is pro-

vided.

Keywords: quantum mechanics, Schrödinger equation, stationary states, covalent bonding, shoot-

ing method, ordinary differential equations, Euler method, Runge-Kutta method

∗ Work supported by the National Science Foundation under grant CCLI DUE 0618252.
†Electronic address: drobertson@otterbein.edu

1

Contents

I. Module Overview 3

II. What You Will Need 3

III. Quantum Mechanics Background 3

IV. Solving the Time-Independent Schrödinger Equation 6

V. Simulation Projects 9

VI. Elaborations 13

A. Numerical Solution of Ordinary Differential Equations 15

1. Basic Concepts 15

2. More Accurate Techniques 18

3. The Runge-Kutta Algorithm 19

4. Exercises 21

References 22

Glossary 24

2

I. MODULE OVERVIEW

This module discusses the solution of the time-independent Schrödinger equation (TISE)

in one dimension using the “shooting” method (sometimes also called the “wag the dog”

method). Solving the TISE is one of the central problems in quantum mechanics, and courses

in quantum physics typically devote considerable time to developing solutions in analytically

tractable cases (e.g., square wells, the harmonic oscillator). The ability to determine the

stationary state wavefunctions and energy eigenvalues numerically allows exploration of

much wider class of potentials, however, and allows the development of deeper intuition

regarding the properties of these systems.

II. WHAT YOU WILL NEED

The minimal physics background required will include quantum mechanics at the level

of a typical sophomore-level course on modern physics, specifically the basic properties of

wavefunctions and exposure to the time-independent Schrödinger equation. An upper-level

course in quantum mechanics will allow a richer exploration of problems with the tools

developed here.

On the mathematical side, facility with differential and integral calculus is essential, as is

a basic familiarity with ordinary differential equations. Students who have passed through

a sophomore-level modern physics course should have the necessary background.

The computing resources needed are actually minimal, as the “size” of the computational

problem is rather modest. The natural framework for scientific computing is a high-level

language like Fortran, C or C++, and this is an excellent project for students to sharpen

their programming skills. However, the needed calculations can be done using Matlab or

Mathematica, or even with a spreadsheet such as Excel. Some facility for generating plots

will also be useful, for example Excel or gnuplot.

III. QUANTUM MECHANICS BACKGROUND

The central problem of quantum mechanics is to find solutions to the Schrödinger equa-

tion, which determines the time evolutions of the wavefunction for a system [1]. For a single

3

non-relativistic particle in one dimension this takes the form

− h̄2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) = ih̄

∂Ψ(x, t)

∂t
, (3.1)

where m is the particle mass and V (x) is the potential energy, here assumed to be in-

dependent of the time t. Given an initial wavefunction Ψ(x, 0), the Schrödinger equation

determines Ψ for all later (and earlier) times.

The physical meaning of Ψ is that it gives the probability density for finding the particle

at different locations, if its position is measured. Specifically, the probability dP to find the

particle in a small range from x to x+ dx at time t is given by

dP = |Ψ(x, t)|2dx. (3.2)

The probability to find the particle in some finite interval in x, say between x = a and x = b,

is then the sum of the probabilities for each infinitesimal interval between a and b:

P =

∫ b

a

|Ψ(x, t)|2dx. (3.3)

A critical requirement for the consistency of the framework is that the total probability to

find the particle somewhere be unity; hence we must require that∫ ∞
−∞
|Ψ(x, t)|2dx = 1. (3.4)

Wavefunctions that satisfy this condition are said to be “normalized.” An important feature

of the time evolution defind by the Schrödinger equation is that if the wavefunction is

normalized at one time, then it will be normalized for all other times as well.

The physical importance of the normalization requirement cannot be over-emphasized;

it is this condition that puts the “quantum” in quantum mechanics. Wavefunctions that do

not satisfy this fall into two classes: functions for which the normalization integral is finite

but not equal to one; and functions for which the normalization integral is infinite. Given a

function in the first class, we can easily produce a normalized wavefunction. Assume that

we have found a solution of the Schrödinger equation Ψ for which∫ ∞
−∞
|Ψ(x, t)|2dx = A, (3.5)

with A a finite number. Then the rescaled wavefunction

Ψ′(x, t) =
1√
A

Ψ(x, t) (3.6)

4

will be properly normalized, i.e., will satisfy∫ ∞
−∞
|Ψ′(x, t)|2dx = 1. (3.7)

Note that because the Schrödinger equation is linear in the wavefunction, the rescaled wave-

function remains a solution.

Functions for which the normalization integral is infinite, on the other hand, cannot be

normalized at all. Such wavefunctions are simply unacceptable for describing real physical

systems, and must be discarded despite being solutions to the Schrödinger equation [3].

The problem of finding solutions to the Schrödinger equation is often approached using

the technique of separation of variables. Here one begins by writing

Ψ(x, t) = ψ(x)ϕ(t). (3.8)

Substitution into the Schrödinger equation then results in a pair of ordinary differential

equations:

ih̄
∂ϕ(t)

∂t
= Eϕ(t) (3.9)

and

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x), (3.10)

where E is a constant to be determined [4]. The solution to eq. (3.9) is elementary:

ϕ(t) = Ae−iEt/h̄ (3.11)

where A is a constant that can be set to one. Notice that ϕ(t) plays no role in the normal-

ization integral – as a pure phase, it disappears in the modulus squared of Ψ [5].

Eq. (3.10) is known as the “time-independent Schrödinger equation” (TISE), and solving

it is a central problem in quantum theory. It has the form of an “eigenvalue” equation,

Ĥψ = Eψ, (3.12)

where Ĥ is the Hamiltonian operator

Ĥ = − h̄2

2m

d2

dx2
+ V (x) (3.13)

and E is the eigenvalue. It should be emphasized that the TISE determines both ψ and E,

that is, we find that each solution ψ works only with some particular value of E. We can

5

label the solutions by an index n, so that each function ψn has a corresponding eigenvalue

En. We must also be sure that our wavefunctions are normalizable; this means that ψ itself

must be normalizable. It is convenient to normalize the ψn so that∫ ∞
−∞
|ψn(x)|2dx = 1. (3.14)

The wavefunction Ψ(x, t) = ψ(x)ϕ(t) is then properly normalized as well.

Wavefunctions of the assumed form Ψ(x, t) = ψ(x)ϕ(t) are not the most general solutions

to the Schrödinger equation; however, general solutions can be built as linear combinations

of the product solutions:

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/h̄, (3.15)

where the cn are constants. These can be determined from the initial conditions: given

Ψ(x, 0), we calculate

cn =

∫ ∞
−∞

ψ∗n(x)Ψ(x, 0). (3.16)

Eq. (3.15) then gives the full solution at any other time.

IV. SOLVING THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

To avoid the complications associated with non-normalizable states, we focus on the

bound state problem. A characteristic feature of such quantum systems is that the eigen-

values En are discrete, or “quantized.” To see why this occurs, we can consider solving the

TISE in the following way. This approach will also form the basis of our numerical method.

We consider a potential V (x) which is zero outside of some characteristic range |x| > a

and negative for |x| < a. The bound state wavefunctions will have energies less than zero

and will be confined roughly to the region of the potential well. There will be some “leaking”

of the wavefunction outside of the well (into the classically forbidden region), but outside

the well the wavefunction typically decays exponentially to zero. Inside the well (i.e., in the

classically allowed region) we generically obtain oscillating solutions for ψn.

Now, the exponential decay outside the well is the result of the normalization condition

(3.14). In these regions there is a growing solution to the TISE in addition to the decaying

one, and the general solution is a linear combination of the two. However, for the wavefunc-

tion to be normalized it must (at a minimum) go to zero for large values of |x|. Hence the

growing solution must be discarded for physically acceptable solutions.

6

For simplicity, consider first potentials that are even functions of x: V (−x) = V (x). In

this case the solutions to the TISE can be chosen to have definite parity, that is, to be even

or odd functions of x:

ψn(−x) = ±ψn(x). (4.1)

Let’s start by looking for an even solution. Begin at the middle of the box and choose a

value for ψ(0). (It doesn’t matter what value we choose here – we must eventually normalize

the wavefunction anyway.) An even solution will also have ψ′(0) ≡ dψ/dx|x=0 = 0. Now,

the TISE is a second-order differential equation that allows us to integrate forward in x,

given the “initial” values ψ(0) and ψ′(0). Of course, to do this we need a value for E to use

in the integration. Let’s just guess something to start with.

Now imagine integrating forward in x until we exit the well. Since the general solution

outside the well contains a growing piece, we expect that the solution we obtain will typi-

cally be growing there, hence not physically acceptable. Let’s assume the solution diverges

towards positive values of ψ as x gets large. Now try again with a different value of E.

This will probably also diverge. Only for specific values of E will the solution arrive at the

edge of the well with just the right shape corresponding to the decaying solution only, hence

normalizable, hence physically acceptable. The general result will be that only particular

values of E are allowed, so the energy levels are quantized.

This also suggests a way to determine the solutions numerically. We start at the center

of the well with a specified ψ and ψ′ = 0, guess a value of E and integrate forward past

the edge of the well. If the solution is diverging there, change E and try again. As we vary

E, the solution will typically diverge either towards positive or negative values of ψ; it is

in between these cases that an acceptable solution is found, one that diverges in neither

direction but continues to asymptote towards zero as x → ∞ (see fig. 1). So we can find

allowed values of E by bracketing them in this way. For the odd solutions we start instead

with ψ = 0 and some arbitrary value for ψ′ at the center.

This is commonly known as the “shooting” method, or sometimes the “wag the dog”

method. Refinements of the basic idea are possible, and I discuss some of these below.

To implement this in detail, we need to address two basic problems: (1) how to perform

the numerical integration; and (2) how to bracket and zero in on the allowed values of E.

The first is addressed by working on a discrete grid of points in x and treating the TISE

as a difference equation, replacing the derivatives by finite differences. An overview of this

7

-4

-3

-2

-1

 0

 1

 2

 3

 4

-20 -15 -10 -5 0 5 10 15 20
-1

 0

 1

 2

 3

 4

 5

 6

W
av

ef
un

ct
io

n

En
er

gy
 (e

V)

x (Angstroms)

E = 0.080 eV
E = 0.079 eV

V(x)

FIG. 1: Two trial solutions bracketing an even-parity energy eigenvalue, for a finite square well of

depth 5 eV and width 20 Å.

approach is given in the appendix, but the simplest method, given a differential equation of

the form
dφ

dx
= f(φ, x), (4.2)

would be to write
φ(x+ ε)− φ(x)

ε
≈ f(φ, x), (4.3)

where ε is the spacing between grid points. We then have

φ(x+ ε) = φ(x) + εf(φ, x). (4.4)

Given the value of φ at x, this allows us to take a step forward to x+ ε. The new value of φ

then furnishes the basis for another step forward, and so on. Hence given one initial value

(at x = 0, say) we can calculate φ for other values of x. The approach should be accurate

as long as ε is sufficiently small so that

φ(x+ ε)− φ(x)

ε
(4.5)

8

well approximates the true derivative dφ/dx. Of course, this expression becomes the exact

derivative in the limit ε→ 0 [6].

This simple scheme is known as Euler’s method, and is not very accurate. Much more

sophisticated techniques are available, some of which are discussed in the appendix. They

are all based on the same fundamental idea, however, that of discretizing the domain and

approximating derivatives with finite differences.

The second problem is essentially that of finding the zeroes of some quantity, here ψ at a

point xmax well outside the potential well. Let us call this ψ+ ≡ limx→xmax ψ(x). This should

be regarded as a function of E,

ψ+ = ψ+(E) (4.6)

and we wish to find the values of E for which this vanishes, i.e., to effectively solve

ψ+(E) = 0 (4.7)

for E.

The simplest approach to this problem is just to start with a guess for E that is guaranteed

to be less than the solution [7], then increase E in small steps until ψ+ changes sign. This

indicates that we have passed through a solution – the wavefunction went from diverging in

one direction to diverging in the other. When this happens we back up to the previous value

of E and halve the step size. Eventually when the relative difference between two successive

values of E drops below some specified tolerance, we declare the solution reached. This

approach is known as the “bisection” method, and it is reliable although rather slow. More

sophisticated approaches, which typically converge to the answer more rapidly, include the

“Newton-Raphson” and “secant” methods. The interested reader should consult a text on

numerical methods to learn about these [2].

V. SIMULATION PROJECTS

1. Infinite Square Well

Write a program to solve for the stationary states of the infinite square well potential.

In this case the boundary conditions require the wavefunction to simply vanish at

the edge of the well. As discussed above, your code should start at the center with

either ψ(0) or ψ′(0) set to zero, depending on the assumed parity of the solution. The

9

initial value of the other variable may be arbitrarily taken to be one; if desired, the

wavefunctions can be normalized after the fact. Now integrate the TISE out to the

edge of the box. Change the energy by some small amount until the sign of ψ changes

at the edge of the well; when this occurs, go back to the previous energy and halve the

step size. Once the relative change in the energy |Enew − Eold|/Eold falls below some

threshold, the calculation is complete.

You can use arbitrary units, e.g., setting h̄2/2m = 4/π2; this makes the exact energy

eigenvalues the simple En = n2. Alternatively, you can assume the particle is an

electron, say, and use some convenient units such as eV and Å.

If desired, the computed wavefunctions can be normalized according to eq. (3.14).

Use Simpson’s rule or the trapezoid rule to evaluate the integral of ψ2, and then

rescale all values of ψ by the square root of the result. Compare the eigenvalues and

wavefunctions to the known exact results.

2. Finite Square Well

Write a program to solve for the stationary states of a finite square well potential.

This works as above except that you now need to integrate past the edge of the box

out to some conveniently chosen maximum value of x, or until the absolute value of

the wavefunction exceeds some specified threshold. (For a “wrong” choice of E the

solution will be exponentially growing in the classically forbidden region. We only

need to notice this fact.) Again, vary E until the sign of ψ+ changes, then back up

and halve the step size. Quit when the relative change in the energy drops below a

specified tolerance.

If desired, the computed wavefunctions can be normalized according to eq. (3.14). Use

Simpson’s rule or the trapezoid rule to evaluate the integral of ψ2, and then rescale

all values of ψ by the square root of this integral.

Note that as the energy nears the top of the well, the wavefunction penetrates more

and more into the classically forbidden region. Be sure that your code is integrating

far enough into this region to give good results.

10

3. Other Potentials

(a) Harmonic Oscillator

Use your program to determine the eigenvalues and wavefunctions for an electron

in a harmonic oscillator potential, V = (1/2)mω2x2. Use eV and Å as above,

and choose ω such that

mω2 = 1 eV/Å
2
, (5.1)

or some other convenient value. Note that as you get higher in the spectrum

of states, the range in x over which the wavefunctions are substantially nonzero

increases. Be sure that the code is integrating far enough past the classical

turning points to give good results.

(b) Anharmonic Oscillator

Study the eigenvalues and wavefunctions for an anharmonic oscillator, with

V = Ax2 +Bx4.

(c) Linear Potential

Study the eigenvalues and wavefunctions for the linear potential

V (x) = A|x|.

4. Infinite Square Well with Perturbation

Determine the effect on the eigenvalues and wavefunctions of adding a small rectan-

gular bump to the center of the infinite square well. Can you understand qualitatively

why the energies change as they do? Compare to the results of stationary state per-

turbation theory for this problem.

5. Orthogonality For any of the potential problems you solve, verify that eigenfunctions

corresponding to different eigenvalues are orthogonal, that is,∫ ∞
−∞

ψn(x)ψn′(x)dx = 0

for n 6= n′. You will need to use Simpson’s rule, the trapezoid rule, or any other

convenient algorithm for numerical integration.

11

-20

-15

-10

-5

 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Po
te

nt
ia

l E
ne

rg
y

(e
V)

x (Angstroms)

FIG. 2: Potential for hydrogen molecule model (energy scale approximate).

6. Model for Covalent Bonding

We can use the program to build a very simple of an H+
2 molecule, i.e., singly ionized

H2, or a bound state of two protons and one electron. This model is really something

of a joke and must not be taken seriously; however, it does exhibit the basic mechanism

behind covalent bonding.

First, let’s model an H atom as a one-dimensional object using a finite square well

in place of the actual Coulomb potential. To match the usual conventions for the

Coulomb potential (V = 0 at large distances), the potential energy should be shifted

so that E = 0 is the top of the well, and its bottom is at E = −V0 where V0 is a

positive constant. The basic properties of the H atom we wish to reproduce are its

size, roughly the Bohr radius, a0 ≈ 0.53 Å, and the ground state energy, −13.6 eV.

Set the well width to 2a0 and use your program to determine V0 such that the ground

state energy is −13.6 eV.

Next, model the potential experienced by the electron in the H+
2 molecule using two of

12

these wells side by side, with centers separated by the known bond length, B = 1.2 Å.

The basic setup is shown in fig. 2. Now use the code to determine the energies of the

ground and first excited states for this double well potential. The result represents the

kinetic and potential energy of the electron, including the “Coulomb” energy arising

from its interaction with the protons. The total energy of the system is obtained by

adding in the Coulomb energy of the protons themselves, estimated as

Vpp ≈
e2

4πε0r

with r = B. (We assume the protons are sufficiently heavy, compared to the electron,

that they are effectively at rest and so have no appreciable kinetic energy.)

Now, based on your results, is the ground state of the system bound? That is, does it

form a stable molecule? What about the first excited state? Can you understand the

results based on the shape of the wavefunction in each case?

VI. ELABORATIONS

The approach presented above is useful when the potential is symmetric, so that the

wavefunctions have definite parity. For nonsymmetric potentials another approach is needed.

In addition, intergration into the classically forbidden regions is likely to be rather unstable

– even if we know the exact eigenvalue, so that the unwanted growing solution should be

absent, round-off error and other numerical inaccuracies will inevitably re-introduce it. For

both these reasons, it is useful to consider an approach in which we integrate in from the

wings, rather than out from the center.

The basic idea is essentially unchanged. We integrate in from both ends, and at a

convenient matching point x0 we require that the two integrations meet with the same value

and slope, just the continuity conditions we impose in analytical problems of this sort. We

adjust E until they join smoothly.

This approach works for any potential, since it makes no assumption about the symmetry

properties of the wavefunctions. It is also more stable, since in the inward integration the

unwanted solutions tend to be suppressed rather than enhanced. The main problem is

determining the starting conditions for the inward integrations. I shall here discuss two

approaches to this.

13

The first is to simply assume that somewhere outside the well of interest there is an

infinite square well, i.e., the potential gets extremely large. If we start the integrations

at these points then the proper boundary condition is ψ = 0. The derivative ψ′ can be

set arbitrarily, since the wavefunction will need to be normalized at the end anyway. The

unphysical walls should have a minimal effect on the results so long as they are far enough

into the classically forbidden region that the true wavefunction will have decayed essentially

to zero there. In practice this can be checked by repeating the calculations with the walls

in different places; if the results are unchanged (to within the desired tolerance), then they

may be accepted.

The second approach is to choose some starting points well outside the potential well,

pick an arbitrary (small) value for ψ at these points, and then determine the derivative

approximately from the Schrödinger equation. In the region outside, the wavefunction decays

exponentially,

ψ ∼ e−κx (6.1)

(for x > 0), where

κ ≡
√

2m

h̄
(V − E), (6.2)

with V the potential at this point. Hence

dψ

dx
≈ −κψ, (6.3)

and this furnishes an approximate starting value for the derivative. Now the integration can

proceed and the solutions matched at an intermediate point.

In either case the matching is conveniently carried out in the following way. Since the

wavefunctions are not normalized, we can easily make ψ itself agree between the two solutions

by rescaling one of them. We then have to match the derivatives. A simple way to accomplish

both needs simultaneously is to match the logarithmic derivatives at the intermediate point.

If ψL and ψR are the solutions integrated inward from the left and right, respectively, then

we require that [
ψ′L
ψL
− ψ′R
ψR

]
x=x0

= 0. (6.4)

This then becomes the quantity that the code attempts to zero by adjusting E.

Interested readers may wish to repeat some of the ealier exercises using these techniques.

14

Appendix A: Numerical Solution of Ordinary Differential Equations

In this section I discuss the basics of solving ordinary differential equations on a computer.

A disclaimer is perhaps in order. This is actually a large and technical area, and I can afford

to touch only on the most basic aspects here. Knowledgeable readers may in fact find certain

aspects of the presentation to be scandalously slipshod and incomplete. In response I can

only say that my goal is to give a basic overview that illustrates most of the relevant issues.

My hope is that this orientation will be sufficient to help guide interested students in further

inquiry, should they choose to pursue it. Additional details may be found in standard texts,

for example, refs. [2].

1. Basic Concepts

An ordinary differential equation (ODE) is an equation satisfied by a function of a single

independent variable, involving derivatives of that function. The order of the ODE is the

order of the highest derivative that occurs; thus

d3y

dx3
+ a(x)

d2y

dx2
+ b(x)

dy

dx
+ c(x)y + d(x) = 0, (A1)

where a, b, c and d are specified functions, is a third-order ODE for the function y(x). We

may also consider a system of ODEs that determines a set of functions, each of the same

independent variable. Typically each function appears in more than one of the equations,

so that they are coupled. Any equation involving only one of the functions can be solved

independently of the others.

To determine a unique solution to an n-th order ODE, it is necessary to further provide n

independent “boundary conditions,” or known values of the function and/or its derivatives

for some value(s) of the independent variable. Often this takes the form of specifying the

function and n − 1 of its derivatives at some common reference value of x; this is known

as the “initial value problem.” (For convenience we often choose this reference point to be

x = 0, if possible.) The canonical example would be the solution to Newton’s second law

of motion, a second-order ODE. A unique solution is determined by specifying the position

and velocity at some reference time. There are other possibilities as well for the specification

of boundary values, but in this module I shall focus on the initial value problem.

15

As a first step, note that an ODE of any order can always be reduced to a coupled system

of first-order ODEs. The basic point may be appreciated by considering Newton’s second

law in one dimension,
d2y

dt2
= f(y), (A2)

where f = F/m with F the net force and m the mass. This is a second-order ODE, but by

introducing the velocity v = dy/dt we can re-write it as a pair first-order equations:

dy

dt
= v (A3)

dv

dt
= f(y). (A4)

The idea is easy to generalize and we leave this to the reader. In general, an n-th order

equation will reduce to a set of n first-order equations. It is therefore sufficient to consider

a set of coupled first-order ODEs. These equations will have the general form

dyi
dx

= fi(x, y1, . . . , yn) i = 1, . . . , n, (A5)

where the yi are the functions to be determined and the fi are given. A full solution to these

also requires the specification of boundary conditions on the functions yi. As discussed

above, we will here consider only the initial value problem. Starting values for all the yi are

thus specified at some common x, which we take to be x = 0 for convenience. The system

of equations (A5) then determines the yi for any other value of x.

Our basic approach to finding approximate solutions will be to advance in x in small steps

of size ε, treating eqs. (A5) as a set of difference equations. We thus evaluate the solution

at a discrete set of x values, xn = nε, where n = 0, 1, 2, The differential equations are

re-written by replacing differentials dx and dy with differences ∆x and ∆y. The result is a

set of algebraic equations for the change in the functions yi in each “step” of size ∆x ≡ ε.

As an example, consider Newton’s second law as presented in eqs. (A4). The simplest

approach would be to approximate these as

∆y

ε
= v (A6)

∆v

ε
= f(y), (A7)

whence

∆y = y(t+ ε)− y(t) = εv (A8)

16

and

∆v = v(t+ ε)− v(t) = εf(y). (A9)

Given values for y and v at time t, we can then obtain these quantities at the next step:

y(t+ ε) = y(t) + εv (A10)

v(t+ ε) = v(t) + εf(y). (A11)

The new values then allow us to take the next step, and so on. Since by assumption we have

the starting values for y and v at t = 0, we can step along and calculate y and v for any t.

If ε is small enough then the differences will approximate the differentials reasonably well,

and the resulting solution can be made as accurate as desired.

This approach, in which we approximate the original derivatives as

dy

dx
≈ y(x+ ε)− y(x)

ε
, (A12)

is known as Euler’s method. It is the simplest approach to solving ODEs numerically,

although it is not especially accurate. To quantify the accuracy, let’s imagine we know the

full solution y(x) for all x. We can then Taylor expand around a point x to obtain

y(x+ ε) = y(x) + εy′(x) +O(ε2), (A13)

where y′ = dy/dx as usual. We thus see that Euler’s method is equivalent to neglecting

terms of order ε2 (and higher) in the true answer. In principle this error can be made as

small as we like, however, by making ε sufficiently small [8].

However, the smaller we make ε, the more steps we need to take to obtain the solution

at some fixed x of interest. For simplicity, say we need y at x = 1. The number of steps

needed is then N = 1/ε. If the error in each step is O(ε2) then the total error in reaching

x = 1 is NO(ε2) or O(ε). Hence to make the solution twice as accurate we will need to halve

the step size ε, leading to twice as much computational work. The work involved is a single

evaluation of the function f at each step.

While conceptually simple, Euler’s method is not recommended for practical applications

due to its poor accuracy. In addition to the extra computational work required, the need

to take many steps to achieve high accuracy can magnify the effect of “roundoff error” in

the computations. The basic issue here is that real numbers are represented discretely on

17

a computer, which means that only a finite subset of all the reals actually “exist” on the

computer. For example, say we use a computer on which a float is 4 bytes, or 32 bits. Each

bit can be 0 or 1, so there are 232 ≈ 4.3× 109 possible different configurations of these bits.

Thus the computer can at most represent this many different floats from among the infinity

of real numbers. The result is that a float on the computer generally is slightly different

than its “true” value – most of the “true” values are simply not representable. Even if we do

start with values that are represented exactly on the computer, when we operate on them –

multiply them together, for example – the exact result is generally not represented. Thus a

small error, called “roundoff error,” is unavoidably introduced [9].

Often this roundoff error can be thought of as a sort of random error – it’s just as likely

to be positive as negative – so that it grows like
√
N for N calculations. In unfavorable

cases the situation may well be worse, however, and in very unfavorable situations this error

may quickly come to dominate a calculation. We will see an example of this below.

2. More Accurate Techniques

We would like to develop algorithms for solving our ODEs that have better accuracy

than Euler’s method, i.e., with overall errors that are O(εn) with n > 1. Such an algorithm

will result in a more rapid increase in accuracy with decreasing step size, leading to greater

overall accuracy for a fixed amount of computational work.

The invocation of the Taylor series above may suggest some ideas. For example, let us

include the next term in the expansion,

y(x+ ε) = y(x) + εy′(x) +
1

2
ε2y′′(x) + (A14)

Since y′(x) = f(x, y) is a known function, we can calculate the second derivative in the ε2

term:

y′′(x) =
df

dx

=
∂f

∂x
+
∂f

∂y

dy

dx

=
∂f

∂x
+
∂f

∂y
f.

So we could step y using

y(x+ ε) = y(x) + εy′(x) +
1

2
ε2
[
∂f

∂x
+ f

∂f

∂y

]
, (A15)

18

which is correct to O(ε3). The overall error in taking n steps would then be O(ε2). This

approach is most useful when f is sufficiently simple that its derivatives can be readily

computed.

As another example, consider that Euler’s method amounts to approximating the deriva-

tive dy/dx by the “forward” difference:

dy

dx
≈ y(x+ ε)− y(x)

ε
. (A16)

There is no reason to suppose this is any more accurate than the “backwards” difference

dy

dx
≈ y(x)− y(x− ε)

ε
, (A17)

but consider using the average of these, the “symmetric” difference. In this case we would

have

dy

dx
≈ 1

2

[
y(x+ ε)− y(x)

ε
+
y(x)− y(x− ε)

ε

]
=

y(x+ ε)− y(x− ε)
2ε

, (A18)

resulting in

y(x+ ε) = y(x− ε) + 2εf(x, y). (A19)

At first glance this looks about as good as Euler, but if we insert the Taylor expansions for

y(x + ε) and y(x − ε) we find that all the O(ε2) terms on the right hand side of eq. (A19)

actually cancel; hence this formula is accurate to O(ε3), as is eq. (A15). We might even be

tempted to use it in preference to eq. (A15), since it does not require us to take additional

derivatives of f . However, this approximation has a problem, which you can explore in one

of the exercises. Do not use it to solve a real problem!

3. The Runge-Kutta Algorithm

A very useful algorithm is known as the Runge-Kutta approach. It is stable and can be

made quite accurate, although it is not always the most efficient algorithm (i.e., the fastest

for a given accuracy). We shall derive here the second-order version of the RK algorithm,

and then simply present the more accurate fourth-order version.

We begin by observing that the basic Euler method,

y(x+ ε) = y(x) + εf(x, y), (A20)

19

assumes the entire change in y over the step is obtained from the derivative at the beginning

of the step. (In fact, if the derivative is constant over the step, or in other words if y is a

linear function of x, then Euler’s method is exact.) A better result might be obtained if we

use eq. (A20) to take a “trial” step to the midpoint of the interval (x+ ε/2), and then take

the full step from x to x + ε/2 using the midpoint values. This corresponds to using the

(approximate) average derivative over the interval in Euler’s method.

Specifically, we take for the trial step:

y(x+ ε/2) = y(x) + (ε/2)f(x, y), (A21)

and then step from x to x+ ε using the midpoint values of both x and y:

y(x+ ε) = y(x) + εf(x+ ε/2, y(x+ ε/2)). (A22)

This algorithm is more conventionally expressed by defining the quantities

k1 = εf(x, y) (A23)

k2 = εf(x+ ε/2, y(x) + k1/2), (A24)

and then stepping as

y(x+ ε) = y(x) + k2 +O(ε3). (A25)

As indicated, the second order dependence on ε cancels (again, substitute the full Taylor

expansions into the given formulas to demonstrate this) so that the algorithm is accurate to

O(ε3). The full error in taking n steps will then be O(ε2), and hence this is known as the

second-order Runge-Kutta algorithm.

More accurate versions of this are possible, in which we take various partial steps across

the interval and combine them so that error terms of higher and higher order are cancelled.

The most popular version is probably the standard fourth-order algorithm, which is as

follows:

k1 = εf(x, y) (A26)

k2 = εf(x+ ε/2, y(x) + k1/2) (A27)

k3 = εf(x+ ε/2, y(x) + k2/2) (A28)

k4 = εf(x+ ε, y(x) + k3) (A29)

y(x+ ε) = y(x) +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(ε5). (A30)

20

It is a straightforward if somewhat tedious exercise to verify that all error terms through

O(ε4) cancel in eq. (A30).

4. Exercises

1. Consider the equation
dy

dx
= −xy

with initial condition y(0) = 1, which has the exact solution y = exp(−x2/2). Study

the numerical integration of this using the methods described above. In particular,

verify that the errors (difference between numerical and exact solutions) decrease ac-

cording to the expected power of ε.

2. Generalize one or more of the schemes presented here to solve a system of two coupled

ODEs, and apply it to solve Newton’s second law for the simple harmonic oscillator

(with m = 1):

dx

dt
= v

dv

dt
= −ω2x.

A useful criterion for accuracy is the degree to which a known integral of the motion,

for example, the energy, is conserved in the evolution. Study the constancy of 2E =

v2 + ω2x2 for the various algorithms and choices for ε.

3. Another common test of accuracy is to integrate backwards to the original starting

point, using the ending x, y as the initial condition. The difference between the

resulting value for y and the original initial condition then gives a measure of the

overall accuracy of the result. Apply this test to the example from problem 1, for the

various algorithms discussed above.

4. Study the approximation given in eq. (A19), by using it to solve the equation

dy

dx
= −y,

with the initial condition y(0) = 1. This equation has the exact solution

y = e−x,

21

of course. To start the calculation off we need both y(0) and y(ε); you can use eq.

(A15) to obtain y(ε). Eq. (A19) can then be used to generate the solution for other

values of x. Does this give a reasonable approximation to the exact answer? If not,

can you determine why?

[1] For additional details on background, see a standard introductory text on quantum mechanics,

e.g., D.J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Prentice Hall, 2005); R.L.

Liboff, Introductory Quantum Mechanics, 4th ed. (Addison Wesley, 2003).

[2] For example, S.E. Koonin, Computational Physics (Benjamin/Cummings, 1985); T. Pang,

An Introduction to Computational Physics (Cambridge University Press, 2006); L.D. Fosdick,

E.R. Jessup, C.J.C. Schauble, and G. Domik, Introduction to High-Performance Scientific

Computing (MIT Press, 1996).

[3] There is an important case where non-normalizable wavefunctions are useful despite their un-

physicality: plane wave solutions for a free particle (V = 0), corresponding to a particle with

a definite momentum. In this case the lack of normalizability is connected to the failure of

such states to properly respect the uncertainty principle: a particle with a definite p would

have ∆p = 0 and hence ∆x = ∞. However, normalizable states can be constructed as linear

superpositions of these plane waves, and, indeed, if sufficient care is exercised, the plane waves

themselves can often be used directly to obtain physical results (e.g., transition and reflection

probabilities for potential scattering).

[4] E can be shown to be a real number, assuming V is real.

[5] By the same token ϕ disappears from the probability integral, eq. (3.2). Hence for particles

described by wavefunctions of the form (3.8), all probabilities are independent of t. Such states

are called “stationary states,” and are static in the sense that their physical properties do not

change in time. A superposition of stationary states with different values of E will produce

time-dependent probabilities, however.

[6] To apply this scheme to a second-order differential equation such as the TISE, we must first

re-write it as a pair of first-order equations for ψ and ψ′:

dψ

dx
= ψ′

22

and
dψ′

dx
=

2m
h̄2 (V (x)− E)ψ.

Then two initial conditions allow us to step both quantities forward in x. See the appendix for

a more detailed discussion of this point.

[7] For the problem at hand, this initial guess could be the minimum of the potential energy, since

it can be shown that the lowest eigenvalue of the TISE is always greater than this.

[8] In practice things are not so simple. On a computer, where real numbers are represented in a

discrete fashion, problems will arise if ε is made too small. The precise nature of the problem

will depend on the details of our scheme, and a detailed discussion of these issues would take us

too far afield. For the moment just keep in mind that ε cannot be made too small in practice.

[9] This is called “roundoff error” because it can be thought of as arising from rounding the results

of calculations from their true mathematical values to values that are actually represented on

the computer.

23

Glossary

bisecion method Simple search-based approach to root finding. The basic

idea is to change the independent variable until the func-

tion changes sign, then back up and halve the step size.

Reliable, albeit slow.

bound state A quantum state in which the wavefunction is nonzero

(apart from exponentially small contributions) only in

some finite region; represents a particle that is localized

in that region.

covalent bond Chemical bond in which atoms effectively “share” elec-

trons.

Euler method Simple method of integrating an ODE based on approxi-

mating differentials by differences. Not recommended for

practical use due to poor accuracy.

Hamiltonian In quantum theory, the operator corresponding to the total

energy of a system.

Newton-Raphson Root-finding algorithm, more efficient than bisection but

requiring the computation of the derivative of the function.

normalization Requirement applied to wavefunctions; physical content

is that the probability of finding the particle somewhere

should be unity.

ordinary differential equation An equation for a function of one independent variable,

involving derivatives of that function.

round-off error Error in floating-point computations on a computer intro-

duced due to the discrete representation of real numbers.

Runge-Kutta A numerical integration algorithm.

Schrödinger equation The central equation of quantum theory, which determines

the time development of the wavefunction.

24

secant method A root-finding algorithm, faster than simple bisection and

without the need to compute derivatives, as in Newton-

Raphson.

separation of variables Technique for separating a partial differential equation into

ordinary differential equations. The basic assumption is a

product form for the solutions.

shooting method Technique for solving boundary value problems in which

the solution is integrated from one side of the domain to

the other and adjusted until the appropriate boundary

conditions are satisfied.

wavefunction The entity that describes the quantum state of a system.

Its modulus squared gives the probability density for po-

sition.

25

